Software Design Description for

Electronic Commerce Processing Node

Version 2.2

June 1999

Inter-National Research Institute, Inc.
12350 Jefferson Avenue, Suite 400
Newport News, Virginia 23602

SDD for ECPN Version 2.2

Thefollowing trademarks and registered trademarks are mentioned in this document. Within the text of this
document, the appropriate symbol for a trademark (™) or a registered trademark (®) appears after the first
occurrence of each item.

Acrobat is a registered trademark of Adobe Systems Incorporated.

CLEO is a registered trademark of Interface Systems, Incorporated.

Kermit is a registered trademark of Henson and Associates, Inc.

Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation, and
Netscape Enterprise Server is a trademark of Netscape Communications Corporation.

Oracle is a registered trademark of Oracle Corporation.

UNIX is a registered trademark of The Open Group.

Copyright © 1999
Inter-National Research Institute, Inc.
All Rights Reserved

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the
clause at DFARS 252.227-7013 (NOV 1995).

Software Design Description

Contents

1.0 Scope 1

1.1 Identification 1
1.2 System Overview 1
1.3 Document Overview 2

2.0 Referenced Documents 3
3.0 CSCI-Wide Design Decisions 4
4.0 Architectural Design 5

4.1 Architectural Overview 5
4.2 Computer Software Components 6
421 DataManagement 6
422 Communications 6
423 X12 Message Processing 6
424 Trandlation 6
425 Audit 6
42.6 Alert Management 7
427 Executive 7
4.3 Message Processing Flow 7
431 X12Message Processing 7
432 UDF Message Processing 7
4321 Incoming UDF 8
4322 Outgoing UDF 9
433 X12and UDF Message Processing 10
44 Interface Design 10

50 ECPN CSCI Detailed Design 12

51 DataManagement 12
511 RPCServer 13
5111 Database, Log, and Queue Rectifications 13
5112 Database, Log, and Queue Creation 14
5.1.2 Databases 15
5121 Database APl 15
513 Logs 19
5131 LogAPI 20
514 Queues 22

SDD FOR ECPN VERSION 2.2 » UNE 1999

CONTENTS

5141 Queue APl 22
515 HashTables 25
5151 Hash TableCreation 25
5.1.5.2 Hash Table Implementation 26
5153 HashTable APl 26
5.1.5.4 Miscellaneous RPCServer Remote Procedure Calls 27
516 Message Object 29
516.1 Message Object APl 29
5.16.2 Message Object Field Descriptions 30
52 Communications 40
521 EditChannels 40
522 Comms 40
5221 Scheduling Sessions 41
5222 Communications Sessions 41
5223 CommsChildren Database 42
5224 Seria Sessions 42
5225 Kermit 43
5226 ZMODEM 46
5227 CLEO 46
52.3 FTPSessions 47
5.2.4 FileTransfer Protocol Daemon (ftpd) 52
5.25 Email Send Electronic Mail (email_meta/email_send) 52
5.2.6 Electronic Mail Daemon (emaild) 55
527 Channel Status 56
5.2.8 Incoming X12 Queue 56
5.2.9 Outgoing Communication Queues 60
5.2.10 Channel Database 61
5.3 X12 Message Processing 64
531 Regular Received X12 Handling 64
5.3.2 Translated UDFto X12 Handling 64
533 UDFtoX12 Retrandate 64
534 System Generated File Handling 65
535 Reroute Handling 65
53.6 Retransmit Handling 65
5.3.7 Message Report Handling 65
53.8 SPS-EDA Handling 66
539 Parsing 66
53.9.1 Element Vaidation 66
53.9.2 Element Storage 66
5.3.9.3 Logging and Message Object Storage 67
5.3.10 Route Lookup 67
53.10.1 824 Routing 68
53.10.2 997 Routing 68
5.3.10.3 Message Route Database 68
5.3.11 Queueing 69
54 Audit 70
54.1 Message Log Database 70
542 Error Queue 71

i SDD FOR ECPN VERSION 2.2 « UNE 1999

6.0

7.0

54.3 Channel Log 72

54.4 Incoming X12 Queue Viewer 73

545 MessagelLog Viewer 73

54.6 Error Queue Viewer 73

5.4.7 Journa Data Summary (JDS) Viewer 75
54.8 Raw Message Viewer 76

54.9 Channel Log Viewer 77

5.4.10 Email Domain Queue Viewer 78

54.11 Channel Queue Viewer 78

54.12 Rejected Email Box Viewer 78

5.4.13 RDBMS Injector 79

5.4.14 RDBMS Retrieval 80
5.4.15 RDBMS Message Database 81
5.4.16 RDBMSTable Database 82

55 Trandlation 83

55.1 UDFto X12 Translator
55.1.1 Processing Flow 84
55.1.2 Channel Configuration 85
55.1.3 Mapsand TSI/Mercator
55.14 UDFto X12 Processing Details 86

55.2 Trading Partner Database (TPDB) 89

55.3 System Setup Database 91

554 X12to UDF Trandator
55.4.1 Processing Flow 91
55.4.2 X12to UDF Processing Details 92

56 Alert Management 95
5.6.1 Alert Daemon

95

5.6.2 Alert Notifier 95

5.6.3 Alert Notifier Database 95

5.7 Executive 96
Requirements Traceability

Acronyms 98

List of Appendices

Appendix A
Appendix B
Appendix C

Appendix D

Alerts 101
System Capacities 102
Glossary 103

M essage Object Parse API

97

104

CONTENTS

SDD FOR ECPN VERSION 2.2 » UNE 1999

CONTENTS

List of Figures

Figure 4-1 ECPN Component Decomposition 5
Figure 4-2 X12 Message Processing 7

Figure 4-3 UDF Incoming Message Processing 8
Figure 4-4 UDF Outgoing Message Processing 9
Figure 4-5 X12 and UDF Message Processing 10

Figure 5-1 Hash Table Data Structure 26

Figure 5-2 UDF to X12 Processing Flow: Trandlation 84
Figure 5-3 UDF to X12 Processing Flow: Decoding/Routing 85
Figure 5-4 X12 to UDF Processing Flow: Trandation 92

List of Tables
Table4-1 Communication Interface COTS Products and Standards 10

Table 5-1 Message Object Fields 30

Table 5-2 Message Object err_type/error_expansion Values 38

Table 5-3 Kermit Operation String/Action Relationship 44

Table 5-4 Kermit Channel Fields (AsyncStruct) 45

Table 5-5 CLEO Channel Fields (CleoStruct) 47

Table 5-6 FTP Channel Fields (FTPStruct) 50

Table 5-7 Email Stats DB Fields (EMAIL_STATS) 53

Table 5-8 Email Channel Fields (EmailStruct) 55

Table 5-9 Channel Status Database (CHAN_STAT_REC) 56

Table 5-10 Incoming X12 Queue Fields (IN_X12 FILE_ REC) 57

Table5-11 UDF to X12 Tranglator Structure (UDF2X12_REC) 59

Table5-12 Outgoing Communication Queue Fields (OUT_CHAN_REC) 60

Table5-13 Channel Database Fields 61

Table5-14 Message Route Database Fields (ROUTE_REC) 69

Table 5-15 Daily Message Log Database Fields (MSG_LOG _REC) 70

Table 5-16 Error Queue Fields (MSG_LOG _REC) 72

Table5-17 JDSViewer Message Journal Pane 75

Table5-18 Channel Log Fields (CHNL_LOG _REC) 77

Table5-19 RDBMS Queue Table (OUT_RDBMS REC) 79

Table5-20 Transaction Queue Table (OUT_TRANS REC) 80

Table 5-21 RDBMS Message Database Fields 81

Table5-22 RDBMS Table Database Fields 82

Table 5-23 Commsto Translation Queue Fields for UDF to X12 Translation
(UDF2X12_QREC) 87

Table5-24 Translator to Router Queue Fields for UDF to X12 Translation
(IN_UDF2X12 REC) 88

Table5-25 Trading Partner Profile Database Fields for Translation 89

Table5-26 CCR 838 Parsed Fields 90

Table 5-27 Router to Translator Queue Fields for X12 to UDF Translation

iv SDD FOR ECPN VERSION 2.2 « UNE 1999

CONTENTS

(X122UDF_QREC) 93

Table5-28 Trandator to Router Queue Fields for X12 to UDF Translation
(X122UDF REC) 93

Table5-29 Trandator to Comms Queue Fields for X12 to UDF Trandlation
(OUT_CHAN REC) 94

Table5-30 Alert Notifier Fields 96

Table B-1 Capacities 102

SDD FOR ECPN VERSION 2.2 » UNE 1999

CONTENTS

This page has been intentionally Ieft blank.

vi SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION

1.0 Scope

This Software Design Description (SDD) appliesto Version 2.2 of the Electronic Commerce
Processing Node (ECPN). This document follows the standards set forth in Military Standard
Software Devel opment and Documentation (MIL-STD-498) and in the associated Data ltem
Description (DID) for a Software Design Description (DI-1PSC-81435), astailored by Inter-
National Research Institute (INRI).

1.1 Identification

ECPN is a Computer System Configuration Item (CSCI) of the Electronic Commerce/
Electronic Data | nterchange (EC/EDI) system.

1.2 System Overview

ECPN isbeing developed by INRI for the Defense Information Systems Agency (DISA). The

role of ECPN isto serve as a single interface between the Government and its commercial

trading partners for conducting EC/EDI. ECPN must ensure interoperability, economies of

scale, and compliance to standards established by the Department of Defense (DoD) and |
Federal Program Office (PO).

The functional objectives of ECPN are to:

« Provide rigorous end-to-end accountability within the ECPN system, with no single point
of failure that could result in loss or nondelivery of data

* Implement a Relational Database Management System (RDBMS) for storage of data
passing through the ECPN

* Provide automated archive and retrieval mechanisms for messages and system
configuration data

« Provide system performance information, including transaction statistics and
communications status

SDD FOR ECPN VERSION 2.2 » UNE 1999 1

SOFTWARE DESIGN DESCRIPTION

1.3 Document Overview

This document describes the design for the ECPN CSCI of the EC/EDI system, including the
alocation of requirements to the Computer Software Components (CSCs) and Sub-Computer
Software Components (SCSCs) that compose ECPN.

This document contains the following sections and appendices:

Scope
States the purpose of the EC/EDI system; describes the role of ECPN within EC/EDI; and
states the purpose of this SDD. (Section 1.0)

Referenced Documents
Lists the documents applicable to this SDD. (Section 2.0)

CSCI-Wide Design Decisions
Addresses ECPN's behavioral design and the selection and design of the CSCs and SCSCs
that make up this CSCISéction 3.0

Architectural Design
Identifies the CSCs that compose ECPN and the concept of execution among these units.
(Section 4.9

ECPN CSCI Detailed Design
Describes the design decisions and any constraints associated with each CSC and SCSC of
ECPN. Gection 5.9

Requirements Traceability
Describes the traceability between the ECPN requirements in this SDD and the ECPN
system requirementsSéction 6.0

Acronyms
Defines the acronyms used in this SDBe¢tion 7.0

Alerts
Defines the ECPN alerts and the processes that generate each oAgEend{x A

System Capacities
Describes the capacities of the ECPN data repositofippeqdix B

Glossary
Defines many terms used throughout this SDppendix Q

Message Object Parse API
Describes the API that allows you to specify a segment filter and apply it to a message
object. Appendix D

2 SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION

2.0 Referenced Documents

The following documents are referenced in this SDD. In the event of alater version of a
referenced document being issued, the later version shall supersede the referenced version.

Cleo 3780Plus User's Guidinterface Systems, Inc., May 1995.
Data Item Description - Software Design Description (DI-IPSC-81435), December 1994.

Electronic Data Interchange Draft Version 3 Release 5 X12 Sandards, Data Interchange
Standards Association, Inc., December 1994.

Federal Acquisition Guidelines (FAR), Draft Federal Government Implementation
Guidelines, Part 10, July 1997.

Kermit: Specification and Verification, Huggins, James K., EECS Department, University
of Michigan, Ann Arbor, MI.

Mercator: Execution Engine Core API Reference Guide, TSI International Software, Ltd.,
1997.

Mercator: Map Editor Reference Guide, TSI International Software, Ltd., 1997.

Military Standard Software Development and Documentation (MIL-STD-498),
Department of Defense, December 1994.

Softwar e Requirements Specification for Electronic Commerce Processing Node, Version
2.2, April 1999. |

SDD FOR ECPN VERSION 2.2 » UNE 1999 3

SOFTWARE DESIGN DESCRIPTION

3.0 CSCI-Wide Design Decisions

The selection and design of the CSCs that make up this CSCI are based on Section 3.0 of the
Softwar e Requirements Specification (SRS) for Electronic Commerce Processing Node.

4 SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION

4.0 Architectural Design

This section describes the following architectural design elements of ECPN:

Architectural overview

Computer Software Components (CSCs) |
Message processing flow

Interface design

4.1 Architectural Overview

Figure 4-1depicts the architectural layout of the system. Note that SCSCs and Computer
Software Units (CSUs) are shown only for the Alert Management CSC, but are representative
of the SCSCs and CSUs for each CSC. (For definitions of these termqprealix C)

Figure 4-1 ECPN Component Decomposition

EC/EDI System

BCEC

SDD FOR ECPN VERSION 2.2 » UNE 1999 5

SOFTWARE DESIGN DESCRIPTION

4.2 Computer Software Components

This section identifies the ECPN CSCs, describes their high-level functions, and summarizes
their constituent SCSCs.

4.2.1 Data Management

The Data Management CSC provides the data access model and software units for managing
databases, logs, queues, and message information. The Data M anagement CSC provides multi-
user and distributed access to the information it maintains. This CSC consists of the
RPCServer, the message object SCSCs, and the system setup database.

4.2.2 Communications

The Communications CSC is responsible for transmitting and receiving UDF and X12
messages using various protocols; managing the communication channels; and reporting
channel status.

The Communications CSC supports asynchronous serial communication with the Kermit® and
ZMODEM protocols; bisynchronous serial communication with the CLEO® protocol; and
network-based Transmission Control Protocol/Internet Protocol (TCP/IP) communication via
FTP and electronic mail (Simple Mail Transport Protocol [SMTP] with Multi-purpose Internet

Mail Extension [MIME]). This CSC consists of: EditChannels, Comms (Kermit, CLEO,
ZMODEM, FtpComms), Ftpd, email-meta/emailsend, emaild, ChanStat, incoming and
outgoing channel queues, and the channel database.

4.2.3 X12 Message Processing

The X12 Message Processing CSC contains those SCSCs and data elements used to interpret
X12 messages and route messages to the communication channels. This CSC also contains the
graphical user interface (GUI) applications that manage the routing of messages. The primary

component of the X12 Message Processing CSC is the Router.

4.2.4 Trandlation

The Trandation CSC converts UDF messages to X 12 messages and also converts X12
messages to UDF messages. The primary components of the Translation CSC arethe InXlator,
OutXlator, and TPProfile (trading partner database).

4.2.5 Audit

The Audit CSC is responsible for creating and managing an audit trail for all messages

processed by ECPN. The primary components of the Audit CSC are a RDBMS, message log,

error queue, channel logs, channel queues, and email domain queue.

6 SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION

4.2.6 Alert Management

The Alert Management CSC provides a single mechanism for generating and managing alerts
across the ECPN CSCI. The components of this CSC are the alert daemon, aert notifier, alert
notifier database, and alert database.

4.2.7 Executive

The ECPN CSCI uses the COE CSCI Executive for launching and managing the processes of
ECPN.

4.3 M essage Processing Flow

This section describes the high-level message processing flow of the ECPN CSCI. The system
processestwo categories of messages—X12 and UDF. X12 is the ANSI benchmark for EC/EDI
UDF is a general term meaning “user-defined file”. Each system that interfaces with ECP
requires a different UDF. ECPN converts UDFs to X12 format (as descriBedtion 5.%for
processing and, if necessary, converts them back to UDF format for delivery.

4.3.1 X12 Message Processing

When an X 12 messageis received by incoming communications, it is passed to the Router. The
Router processes the message, determines the intended recipients, and identifies the
appropriate outgoing communications channel(s). If the message isto be sent asan X12, itis
forwarded directly to the outgoing communications channel(s).

Figure 4-2 X12 Message Processing

Incoming X12

Communications
Processes

Outgoing
Communications
Processes

X12
R

4.3.2 UDF Message Processing

UDF messages can be received and transmitted by the system. Because the primary message
type processed by EPCN is X 12, the system must translate all UDFsto X12 in order to archive
and route the messages in a consi stent manner.

SDD FOR ECPN VERSION 2.2 » UNE 1999 7

SOFTWARE DESIGN DESCRIPTION

4.3.2.1 Incoming UDF

Incoming UDF messages are queued from incoming communications to the Trandlator. The
Tranglator then converts the messages from UDF to X 12 and queues the converted X 12
messages to the Router.

Figure 4-3 UDF Incoming Message Processing

Incoming
Communications
Processes

UDF to X12
Translation

8 SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION

4.3.2.2 Outgoing UDF

The Router processes the X12 message, determines the intended recipient, and identifies the
appropriate outgoing communication channel (s). If the message is to be sent to a UDF-based
channel, the Router queues the message to the X12 to UDF Trandlator for conversion. The
resulting UDF message is then queued to outgoing communications and transmitted.

Figure 4-4 UDF Outgoing Message Processing

Outgoing
Communications
Processes

X12 UDF

X12 to UDF
Trandation

SDD FOR ECPN VERSION 2.2 » UNE 1999 9

SOFTWARE DESIGN DESCRIPTION

4.3.3 X12 and UDF Message Processing

Figure 4-5 depictsthe entire message processing capability. M essages can be received and sent
as either UDF or X12, but all messages processed by the Router must bein X12 format.

Figure 4-5 X12 and UDF Message Processing

X12] _ X12
— Incoming Outgoing

— Communications Communications
UDF Processes Processes

UDFto X12
Translation

X12 to UDF
Translation

4.4 Interface Design

ECPN is developed using open system components and standards. Initsrole asa
communications relay between government and industry, ECPN relies upon commercialy
available communication interfaces. When possible, ECPN builds upon existing commercial
off-the-shelf (COTYS) software and adheres to the de-facto standards relevant to agiven
communications protocol. The communication standards and COTS products used by ECPN
areoutlined in Table 4-1.

Table 4-1 Communication Interface COTS Products and Sandards

Communication Type COTSProduct Standards
FTP FTP libs 4.0, Wu-ftpd RFC 793, RFC 959
2.4.2-B121

Email (SMTP and MIME) | c-client, Sendmail 8.7.6 RFC 793, RFC 821 (SMTP), RFC
2045 (MIME)

Kermit Kermit 6.0 Kermit Specification and
Verification

ZMODEM rz 3.42, sz 3.40 N/A

CLEO CLEO 05265 (3780) Cleo 3780Plus User’'s Guide

10 SDD FOR ECPN VERSION 2.2 « JUNE 1999

SOFTWARE DESIGN DESCRIPTION

1 Modified by INRI.

For more detailed information, see the Interface Design Description (IDD) for the Electronic
Commer ce Processing Node.

SDD FOR ECPN VERSION 2.2 » UNE 1999 11

SOFTWARE DESIGN DESCRIPTION

5.0 ECPN CSCI Detailed Design

This section describes the ECPN CSCs, their constituent SCSCs, and their primary data
elements. The CSC descriptions include a summary of the SCSCs that comprise each CSC
along with any constraints, limitations, or unusual featuresin the design of the software unit.
Unless otherwise noted, all CSUs are written in the C programming language.

5.1 Data M anagement

12

The Data Management CSC provides access and management interfaces for the various
databases, queues, logs, and message storage mechanisms used within EPCN. The CSUs that
make up the Data Management CSC are stored within the Data Management local and remote
libraries. The CSUs within these libraries implement the same application programming
interface (API), but the data access method used by each library varies: the loca library
routines usefileinput / output (1 / O), and the remote library components use remote procedure
calls (RPCs). Thelocal library is used by core processes that require high-speed access to data
(e.g., the Router). The remote library is used by GUI applications and provides access to data
on aremote computer system.

There are two distinct views, families of APIs, and methods for accessing data: local and
remote. Local accessto datais performed using file /O, while dataintegrity isensured by using
file and record locking to serialize data access between processes. Data accessed via the local
versions of an APl is always consistent and up-to-date. Local accessis used by core ECPN
processes such asthe Router and provides high-performance dataaccess. L ocal dataisaccessed
viathe APIs stored in the local library.

Conversely, an application requiring remote data access uses RPCs to obtain the same data
from the RPCServer. Once returned from the RPCServer, the data records are stored in
dynamically allocated memory, representing a snapshot of the database. Because the remote
library maintains a snapshot of the data, that data may become out-of-date with the datain the
file (whether aremote or local file). Database and record versioning are used to ensure that
operations on out-of -date records do not occur. Remote data access is supported by the APIs
stored in the remote library.

Toillustrate remote access, consider two users viewing datafrom record 1 in adatabase. While

user A isviewing the data, user B is aso viewing the same data, modifies part or al of the

record, and stores the modified record in the database. At this point, user A islooking at an out-

of-date version of record 1. When user A modifies and then attempts to store data, the remote

library code silently passes version information about the record to the RPCServer. By

comparing the current version of record 1 with the version passed in the transaction, the

RPCServer determines that user A’'s modification request is based on an old version of record
1 and returns an OUT-OF-DATE error to the application. If requested, user A’s application can
issue a db_update() call to synchronize the remote snapshot of the data with the current version
stored on disk.

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION

Another distinction between local and remote data access is that the remote versions of the
APIs cannot lock resources.

The Data Management CSC consists of the following SCSCs:

e RPCServer

+ Databases

* Logs

¢ Queues

* Hash Tables

e Message Object

Within the context of the Data Management CSC description, the following definitions apply:

Database
A database provides random access to the records it contains. Records within the database
are unordered and may be retrieved by record number or by starting at the first record and
iterating to each subsequent record.

Log
Records within a log cannot be deleted and may only be added by appending the record to
the log.

Queue
Queues maintain stores of records grouped by precedence. Individual records are retrieved
by specifying the precedence of the record to be retrieved. Records can also be deleted.

Hash Table
Hash tables provide very fast lookups of records based on fields within the record.

5.1.1 RPCServer

The RPCServer manages requests from applications requiring remote access to data. The
RPCServer provides access to message objects (as descB8eeton 5.1.5 databases, logs,
and queues.

5.1.1.1 Database, Log, and Queue Rectifications

Database rectifications are used to perform server-side actions on a database, log, or queue
whenever a database entry is modified, added, or deleted. Rectification routines perform checks
to determine whether a requested action should be allowed. They also ensure that
synchronization occurs between multiple RPC databases. For example, a rectification routine
is used to ensure that each time a channel is added to the channels database, a corresponding
entry is added to the channel status database.

SDD FOR ECPN VERSION 2.2 » UNE 1999 13

SOFTWARE DESIGN DESCRIPTION

To install arectification routine, do the following:

a. Addtherectification routineto db_rect.c (in src/c/system/RPCServer). The arguments
to every rectification routine are the same, and are as follows:

trans: The action being performed (DBT_STORE, DBT_MERGE, or
DBT_DELETE)

— rec_num: The database record number being acted on

— db_ptr: A pointer to the record on disk being acted on (NULL if the RPCServer
is performing an append). This argument is of the same type as the entries in the
database.

— item: A pointer to the record being changed or added (NULL if the RPCServer
is performing a delete). This argument is of the same type as the entries in the
database.

— filename: A pointer to the database filename (currently unused)
— username: The user requesting the operation (for future security checks)

— host: The host from which the operation is being requested (for future security
checks)

— open_db: A pointer to the (already open) database, log, or queue.
b. Add a function declaration for the rectification routine to src/c/inc/EC/db_rect.h.

c. Add the rectification function to the db_tab[] table. The db_tab[] table is defined in src/
c/inc/EC/db_tab.h. The rectification routine is the third argument in the table entry.

Each time the RPCServer performs a store or delete operation, the rectification routine (if it
exists) is run, and the return value is checked before continuing with the operation. The
database APPEND operation may result in two calls to the rectification routine. First, if an
existing record is being replaced, a DELETE operation calls the rectification routine. Second,
the database rectification routine is called from within the STORE operation. To differentiate
between STORE and APPEND operations, check the dargpiment—it will be NULL for
APPENDs.

5.1.1.2 Database, Log, and Queue Creation

Databases, logs, and queues are created by processes using the appropriate open call, e.g.,
db_open() or log_open(), with the DB_CREATE flag set.

14 SDD FOR ECPN VERSION 2.2 « JUNE 1999

SOFTWARE DESIGN DESCRIPTION

5.1.2 Databases

A database provides random access to the records it contains. Records within the database are
unordered and may be retrieved by record number or by starting at thefirst record and iterating
to each subsequent record.

5.1.2.1 Database API

The following functions make up the database API. Most of these functions operate on the
RPC_DATABASE handle that is obtained when the database is opened with the db_open()
function.

int

db_alloc(RPC_DATABASE *dbp)

db_alloc() returns the record number of an available record in the database or DB_EOF if no
free records exist.

int

db_append(RPC_DATABASE *dbp, const void * data)

db_append() behaves like db_store() except that the datais stored in the first free
record. db_append() returns the record number where the data was stored on success or
DB_EOF on error.

unsigned long
db_capacity(RPC_DATABASE *dbp)
db_capacity() returns the capacity that was used when the database was opened.

void
db_close(RPC_DATABASE *dbp)
db_close() closes the database and frees all associated memory.

int

db_delete(RPC_DATABASE *dbp, int rec_no)

db_delete() deletes the record ‘rec_no’. This record will be marked free, its data will be erased,
and it will not be available for fetching. db_delete() returns 1 on success and 0 on error.

const char *

db_error(RPC_DATABASE *dbp)

db_error() returns a null-terminated string describing the last error associated with the database
represented by dbp. Note that db_error() and the value of dbp->err are valid only when a
database action fails. Their behavior is undefined if they are used after a successful operation.

int

db_fetch(RPC_DATABASE *dbp, int rec_no, const void *data)

db_fetch() fetches the data associated with record number ‘rec_no’ and places that data into the
area pointed to by ‘data’. db_fetch() returns the record number on success or DB_EOF if an
error occurs. Records that have not already been stored (i.e., free records) may not be fetched.

SDD FOR ECPN VERSION 2.2 » UNE 1999 15

SOFTWARE DESIGN DESCRIPTION

char *

db_filename(RPC_DATABASE *dbp)

db_filename() returns a null-terminated string representing the filename associated with
database ‘dbp’.

int
db_first(RPC_DATABASE *dbp)
db_first() returns the record number of the first stored record in the database.

int
db_free(RPC_DATABASE *dbp)
db_free() returns the record number of the first free record in the database.

DB_REC_HDR *

db_hdr(RPC_DATABASE *dbp, int record)

db_hdr() returns a pointer to the database record header represented by record. This function
should not normally be used by most applications.

unsigned long

db_id_num(RPC_DATABASE *dbp)

db_id_num() returns the ‘id’ of database ‘dbp’. This ‘id’ is used to determine whether the
database needs to be converted.

unsigned long
db_in_use(RPC_DATABASE *dbp)
db_in_use() returns the number of stored records in the database.

int
db_last(RPC_DATABASE *dbp)
db_last() returns the record number of the last stored record in the database.

void

db_lock(RPC_DATABASE *dbp)

db_lock() will lock an entire database. As in the use of file locks, db_lock() will only lock out
those processes that attempt to lock the database before use. This operation is a no-op for
applications that access data remotely, because such applications cannot lock data.

int

db_lock_record(RPC_DATABASE *dbp, int rec_no, int block)

db_lock_record() locks the record ‘rec_no’. As in the use of file locks, db_lock_record() will
only lock out those processes that attempt to lock the same record before use. This function will
block the caller if the block parameter is non-zero. This operation is a no-op for applications
that access data remotely, because such applications cannot lock data.

16 SDD FOR ECPN VERSION 2.2 « JUNE 1999

SOFTWARE DESIGN DESCRIPTION

int

db_lookup(RPC_DATABASE *dbp, void *keyp, int nbytes)

db_lookup() performs a lookup of the key ‘keyp’ in the associated database hash table,
assuming one is available. If a hash table is not available or the key is not found, DB_EOF is
returned. If the hash table is available and the key is found, the record number where the key
may be found is returned. For a complete description of the RPC database hash table, see
Section 5.1.5.2

long
db_ltom(RPC_DATABASE *dbp)
db_Itom() returns the last time of modification for database ‘dbp’.

char *
db_mod_host(RPC_DATABASE *dbp)
db_mod_host() returns the hostname associated with the last modification of database ‘dbp’.

int
db_mod_uid(RPC_DATABASE *dbp)
db_mod_uid() returns the user id of the last user that modified database ‘dbp’.

int

db_next(RPC_DATABASE *dbp, int rec_no)

db_next() returns the record number of the record following ‘rec_no’. If the record ‘rec_no’ is

free, db_next() will return the next free record. If the record ‘rec_no’ is not free, db_next() will

return the next ‘stored’ record. db_next() will return DB_EOF on error or when it reaches the
end of the database. The following line of code is commonly used to run through the ‘stored’
records in a database:

for (r=db_first(dbp); r '= DB_EOF; r=db_next(dbp, r))

RPC_DATABASE *

db_open(const char *filename, int mode, DBF_FORMATS format, unsigned long capacity)
db_open() will open a database with the given filename. The ‘format’ parameter is one of the
enumerated types DBF_FORMATS found in db.h and specifies the data that is stored in the
database. This format is mapped to a record type in db.h and db_tab.c. The capacity is the
maximum number of entries allowed in the database. For ‘unlimited’ capacity, set this value
to MAXINT. This function returns an RPC_DATABASE * that will be used in all the other
database APIs or NULL on error.

int

db_prev(RPC_DATABASE *dbp, int rec_no)

db_prev() works the same as db_next() except it returns the previous record number, instead of
the next record number. db_prev() returns DB_EOF when it reaches the beginning of the
database.

SDD FOR ECPN VERSION 2.2 » UNE 1999 17

SOFTWARE DESIGN DESCRIPTION

18

int

db_rec_free(RPC_DATABASE *dbp, int record)

db_rec_free() returns a non-zero value if the database record ‘record’ is free. Otherwise, it
returns O.

unsigned long
db_rec_size(RPC_DATABASE *dbp)
db_rec_size() returns the size (in bytes) of a record stored in database ‘dbp’.

unsigned long
db_rec_version(RPC_DATABASE *dbp, int record)
db_rec_version() returns the database version for record ‘record’.

unsigned long *

db_records(RPC_DATABASE *dbp)

db_records() returns a pointer to an array containing the record number of all records stored in
the database. This array of record numbers is generated by the db_first()/db_next() sequence
above. The db_records call is useful when an application needs to fetch the xth through the yth
element in a database.

void

db_set_id_num(RPC_DATABASE *dbp, unsigned long id_num)

db_set_id_num() sets the database ‘id’ for database ‘dbp’. This ‘id’ will later be used to
determine whether a database needs to be converted.

int

db_store(RPC_DATABASE *dbp, int rec_no, const void *data)

db_store() stores the data represented by the ‘data’ parameter in the record ‘rec_no’. If that
record was a free record, it will automatically be marked ‘in_use’ and will be available for
fetching. db_store() returns 1 on success or 0 on error.

void

db_sync(RPC_DATABASE *dbp)

db_sync() writes all memory-mapped data for a given database to disk. This operation is not
normally necessary for applications.

void

db_unlock(RPC_DATABASE *dbp)

db_unlock() releases the lock on a database obtained via db_lock(). This operation is a no-op
for applications that access data remotely, because such applications cannot lock data.

void

db_unlock_record(RPC_DATABASE *dbp, int rec_no)

db_unlock_record() will release the lock on record ‘rec_no’ obtained via db_lock_record().
This operation is a no-op for applications that access data remotely, because such applications
cannot lock data.

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION

int

db_update(RPC_DATABASE *dbp)

db_update() updates the datain the remote database copy to match the copy on the server. This
operation is a no-op for applications that access data locally, because such applications use
direct filel/C.

void

db_update Itom(RPC_DATABASE *dbp, int uid, const char *host)

db_update_Itom() updates thelast time of modification (to the current time), the user (uid) that
last modified the database ‘dbp’, and the hostname from where the last modification was
originated.

unsigned long
db_version(RPC_DATABASE *dbp)
db_version() returns the global database version number.

void

disable_db_cache(void)

disable_db_cache() will disable the database cache. Internally, the database code caches the
most recently used databases. When an application calls db_close(), the database data is flushed
to disk, but the database is not necessarily unmapped. This allows for the efficient opening of
frequently used databases. Disabling the database cache will seriously impact application
performance in most cases, so it should be used with caution.

void

enable_db_cache(void)

enable_db_cache() will enable the database cache after it has been disabled by calling
disable_db_cache(). The database cache is enabled by default, so this function will only be
necessary if disable_db_cache() has been used. For a complete description of the database
cached, see disable_db_cache().

5.1.3Logs

include appending to the end of the log and modifying the data in a record. Deleting entri

The log API provides methods to create and manipulate a log. Allowable API operations
is
not allowed.

SDD FOR ECPN VERSION 2.2 » UNE 1999 19

SOFTWARE DESIGN DESCRIPTION

5.1.3.1Log API

20

int

log_append(RPC_LOG *logp, const void * data)

log_append() behaves like log_store() except that the datais stored in the first free
record. log_append() returns the record number where the data was stored on success or
DB_EOF on error.

unsigned long
log_capacity(RPC_L OG *logp)
log_capacity() returns the capacity that was used when the log was opened.

void

log_close(RPC_LOG *logp)

log_close() will close ‘logp’ that was opened via a log_open () call and free all associated
memory.

int

log_fetch(RPC_LOG *logp, int rec_no, const void *data)

log_fetch() will fetch the data associated with record number ‘rec_no’ and place that data into
the area pointed to by ‘data’. log_fetch() returns the record number on success or DB_EOF if
an error occurs. Records that have not already been stored (i.e., free records) may not be
fetched.

int
log_free(RPC_LOG *logp)
log_free() returns the record number of the first free record in the log.

int
log_first(RPC_LOG *logp)
log_first() returns the record number of the first stored record in the log.

unsigned log
log_in_use(RPC_LOG *logp)
log_in_use() returns the number of stored records in the log.

int
log_last(RPC_LOG *logp)
log_last() returns the record number of the last stored record in the log.

void

log_lock(RPC_LOG *logp)

log_lock() will lock an entire log. As in the use of file locks, log_lock() will only lock out those
processes that attempt to lock the log before use. This operation is a no-op for applications that
access data remotely, because such applications cannot lock data.

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION

int

log_next(RPC_LOG *logp, int rec_no)

log_next() returns the record number of the record following ‘rec_no'. If the record ‘rec_no’ is
free, log_next() will return the next free record. If the record ‘rec_no’ is not free, log_next()
will return the next ‘stored’ record. log_next() will return DB_EOF on error or when it reaches
the end of the log. The following line of code is commonly used to run through the ‘stored’
records in a log:

for (r=log_first(logp); r '= DB_EOF; r=log_next(logp, r))

RPC_LOG *

log_open(const char *filename, int mode, DBF_FORMATS format, unsigned long capacity)
log_open() will create a database with the given filename. The ‘format’ parameter is one of the
enumerated types DBF_FORMATS found in db.h and specifies the data that is stored in the
database. This format is mapped to a record type in db.h and db_tab.c. The capacity is the
maximum number of entries allowed in the database. For unlimited capacity, set this value to
MAXINT. This function returns an RPC_LOG * that will be used in all the other log APIs or
NULL on error.

int

log_prev(RPC_LOG *logp, int rec_no)

log_prev() works the same as log_next() except it returns the previous record number, instead
of the next record number. log_prev() returns DB_EOF when it reaches the beginning of the

log.

unsigned long *

log_records(RPC_LOG *logp)

log_records() returns a pointer to an array of records. This array of records is generated by the
log_first()/log_next() sequence above. The log_records call is useful when an application
needs to fetch the xth through the yth element in a log.

int

log_store(RPC_LOG *logp, int rec_no, const void *data)

log_store() will store the data represented by the ‘data’ parameter in the record ‘rec_no’. If that
record was a free record, it will automatically be marked ‘in_use’ and will be available for
fetching. log_store() returns 1 on success or 0 on error.

void

log_unlock(RPC_LOG *logp)

log_unlock() will release the lock on a log. This operation is a no-op for applications that access
data remotely, because such applications cannot lock data.

int

log_update(RPC_LOG *logp)

log_update() will update the data in the remote log copy to match the copy on the server. This
operation is a no-op for applications that access data locally, because such applications use
direct file I/C.

SDD FOR ECPN VERSION 2.2 » UNE 1999 21

SOFTWARE DESIGN DESCRIPTION

5.1.4 Queues

The queue API provides methods to create and manipulate multi-precedence, first-in first-out
(FIFO) queues. The maximum number of precedencesis 20.

Allowable API operations include appending to the end of the queue (at the correct
precedence), modifying the datain arecord, and deleting an entry from the queue. APIs aso
exist that allow a consumer of the queue data to block on an empty queue.

The queue API alows multiple consumers to process distinct entries within the same queue.
Typicaly, thisis done by having a master consumer process that monitors the growth of the
gueue and spawns additional consumer processes. The consumer processes act upon and
remove entries in the queue until al entries have been processed, at which point all consumer
processes, except the master consumer, terminate. The consumer processes use

g _fetch _and_lock() to retrieve each record and, thereby, prevent another consumer process
from retrieving the same record. Should a consumer process terminate abnormally, any locks
placed on the record by that process using q_set_and lock() will be removed. This action
allows the record to be processed by another consumer process.

5.1.4.1 Queue API

22

int

g_append(RPC_QUEUE *gp, int prec, const void * data)

g_append() inserts the data represented by ‘data’ as the last element with precedence ‘prec’.
g_append() returns the record number where the data was stored on success or DB_EOF on
error. If the queue was empty before this append and the pid field in the queue header is non-
zero, the calling process will send a SIGUSRL1 signal to the process specified by ‘pid.” For more
detail see the description of q_fetch_and_lock().

void

g_close(RPC_QUEUE *gp)

g_close() takes an RPC_QUEUE * argument that was the result of a previous gq_open() call.
This function will close the queue and free all associated memory.

int

g_delete(RPC_QUEUE *qgp, int rec_no)

g_delete() will delete the record ‘rec_no’. This record will be marked free, its data will be
erased, and it will not be available for fetching. If the calling process holds a record lock on
this record, q_delete() will release it. g_delete() returns 1 on success and 0 on error.

int

g_fetch(RPC_QUEUE *gp, int rec_no, const void *data)

g_fetch() will fetch the data associated with record number ‘rec_no’ and place that data into the
area pointed to by ‘data’. g_fetch() returns the record number on success or DB_EOFon error.
Records that have not already been stored (i.e., free records) may not be fetched.

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION

int

g_fetch_and_lock(RPC_QUEUE *qp, void *data, struct timeval *tv)

g _fetch and lock() fetches and locks the next available record in the queue. Locking the
individual record keeps that record from being used by other processes that use

g _fetch _and lock() to retrieve records. If more than one process is feeding from the same

gueue, they should al use g fetch _and_lock(). While q fetch() will fetch records, it will not
obey the record locking that isimplemented in q_fetch_and_lock(), thus allowing processesto

step on each other. “*tv’ represents the amount of time to block in this function while waiting
foran entry. If ‘tv’is NULL, g_fetch_and_lock() will block on an empty queue forever. If ‘tv’
is non-NULL, q_fetch_and_lock() will block for the time specified in ‘tv'.

g_fetch_and_lock() installs a signal handler to handle the SIGUSR1 signal that will be sent by
a process that appends to an empty queue.

g_fetch_and_lock() returns DB_EOF on a failed fetch or if a timeout occurs and the queue is
still empty; otherwise, it will return the record number that was fetched and locked.
g_fetch_and_lock() should not be used by those applications linked with the remote library.

int
g_first(RPC_QUEUE *qp)
g_first() returns the record number of the first stored record in the queue.

unsigned long
g_in_use(RPC_QUEUE *gp)
g_in_use() returns the number of stored records in the queue.

unsigned long
g_in_use_prec(RPC_QUEUE *qp, int prec)
g_in_use_prec() returns the number of stored records in the queue at the precedence ‘prec’.

void

g_lock(RPC_QUEUE *qp)

g_lock() will lock an entire queue. As in the use of file locks, q_lock() will only lock out those
processes that attempt to lock the queue before use. This operation is a no-op for applications
that access data remotely, because such applications cannot lock data.

int

g_next(RPC_QUEUE *qp, int rec_no)

g_next() returns the record number of the record following ‘rec_no’ based on FIFO precedence
ordering. db_next() will return DB_EOF on error or when it reaches the end of the queue. The
following line of code is commonly used to run through the records in a queue in FIFO
precedence order:

for (r=q_first(gp); r '= DB_EOF; r=q_next(gp, 1))

SDD FOR ECPN VERSION 2.2 » UNE 1999 23

SOFTWARE DESIGN DESCRIPTION

24

RPC_QUEUE *

g_open(const char *filename, int mode, QF_FORMATS format, unsigned long capacity)

g_open() will create a FIFO-precedence queue with the given filename. The ‘format’ parameter
is one of the enumerated types QF_FORMATS found in db.h and specifies the data that is
stored in the queue. This format is mapped to a record type in db.h and queue.c. The capacity
is the maximum number of entries allowed in the queue. For unlimited capacity, set this value
to MAXINT. This function returns either an RPC_QUEUE * to be used in all the other queue
APIs or NULL on error.

int

g_prev(RPC_QUEUE *qgp, int rec_no)

g_prev() works the same as g_next() except it returns the previous record number, instead of
the next record number. g_prev() returns DB_EOF when it reaches the beginning of the queue.

int
g_rec_prec(RPC_QUEUE *gp, int rec_no)
g_rec_prec() returns the precedence of the record ‘rec_no’ or DB_EOF on error.

time_t
g_rec_toq(RPC_QUEUE *qgp, int rec_no)
g_rec_toq() returns the time-of-queue for the record ‘rec_no’ or DB_EOF on error.

void

g_set_pid(RPC_QUEUE *gp, long pid)

g_set_pid() places the process id specified by ‘pid’ into the pid field of the queue. When a
process appends an entry to an empty queue, the process will send a SIGUSRL1 to the process
identified by ‘pid’. Because the process identified by ‘pid’ has specified a signal handler for the
SIGUSR1 signal, that process can be notified when an empty queue contains data and thereby
avoid repeated polling to find non-empty queues. This operation is a no-op for applications that
access data remotely, because such applications cannot lock data.

int

g_store(RPC_QUEUE *gp, int rec_no, const void *data)

g_store() will store the data represented by the ‘data’ parameter in the record ‘rec_no’. If that
record was a free record, it will automatically be marked ‘in_use’ and will be available for
fetching. g_store() returns 1 on success or 0 on error.

void

g_unlock(RPC_QUEUE *gp)

g_unlock() will release the lock on a queue. This operation is a no-op for applications that
access data remotely, because such applications cannot lock data.

void

g_unlock_record(RPC_QUEUE *qgp, int rec_no)

g_unlock_record() will release the lock on record ‘rec_no’. This operation is a no-op for
applications that access data remotely, because such applications cannot lock data.

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION

void

g_update(RPC_QUEUE *qp)

q_update() will update aremote application’s copy of the queue to match the copy on the
server. This operation is a no-op for applications that access data locally, because such
applications use direct file I/C.

5.1.5 Hash Tables

For those databases that require fast, efficient lookups, hash tables are available. The hash table
code implements a disk-based hash table. The hash table API provides concurrent access
between processes during lookups and is non-volatile and very tunable.

5.1.5.1 Hash Table Creation

The only code necessary to ensure that a hash table is created and maintained is the addition of
‘get_key()’ functions to the db_tab table (found in db_tab.h). These get_key() functions must
match this prototype:

int
get_key(const void *datap, void **rsltp, int *nbytesp)

‘datap’ is a pointer to the data, which should be cast to the type of variable that is appropriate
for this function. “*rsltp’ should point to the beginning of the field that should be entered in the
hash table. *nbytesp should be filled in with the length (in bytes) of the key. An example of a
get_key() function follows:

typedef struct {
char name[25];
int date;

} FOO;

int

get_name(void *datap, void **rsltp, int *nbytesp)
{

FOO *p = (FOO *)datap;

*rsltp = p->name;

*nbytes = strlen(p->name);

}

More than one get_key() function may be defined for a given database. The only restriction is
that the actual keys that are added must be unique.

To make use of the hash table, use db_lookup() (descritgstiion 5.1.2.1

SDD FOR ECPN VERSION 2.2 » UNE 1999 25

SOFTWARE DESIGN DESCRIPTION

5.1.5.2 Hash Table Implementation

A hash table consists of abucket directory and a number of buckets. The bucket directory
consists of one or more file blocks, and a bucket consists of exactly one block. The bucket
directory isindexed by the hash value of the key. From that index into the bucket directory, the
buckets are then searched for the key. The records in each bucket are sorted by the data value,
so abinary search of the datais used to speed up the search. If the key is not found in the first
bucket, any and all subsequent data blocks are searched until the last block is searched or the

key isfound.
Figure 5-1 Hash Table Data Sructure
Header
Bucket 0
_Buketl) rLr2r3r4r5r6| ——» 1718
_ Bucketn | data block data block

bucket directory

5.1.5.3 Hash Table AP

When accessing a hash table that is associated with a database, the database APl manages the
hash table using the hash table API. This API should only be used directly when implementing
hash tabl es outside of the scope of the RPC databases. The following isadescription of the hash
table API.

void
ht close(HTBL *hp)
ht_close() closes a hash table and frees all associated memory.

int

ht_delete(HTBL *hp, void *keyp, int nbytes)

ht_delete() performs a lookup of ‘keyp’ and deletes the entry if found. ht_delete() will return 1
on success and 0 on failure.

unsigned long
ht_get_version(HTBL *hp)
ht_get_version() returns the version of a hash table.

26 SDD FOR ECPN VERSION 2.2 « JUNE 1999

SOFTWARE DESIGN DESCRIPTION

int

ht_insert(HTBL *hp, int rec, void *keyp, int nbytes)

ht_insert() will insert ‘keyp’ into the hash table. ‘rec’ is also stored with ‘keyp’ and will be
returned when a lookup of ‘keyp’ is performed. ht_insert() returns 0 on failure or the number
of disk block accesses required to insert this entry on success.

int

ht_lookup(HTBL *hp, void *keyp, int nbytes)

ht_lookup() performs a lookup of ‘keyp’ and, if found, returns the associated ‘rec’. ht_lookup()
returns -1 on error, or the ‘rec’ on success.

HTBL *

ht_open(char fname, int capacity, int maxkeysize, int blockspervalue)

ht_open() opens a disk-based hash table. ‘fname’ is the filename of the file to open. ‘capacity’
is the expected number of entries in the hash table. ‘maxkeysize’ is the number of bytes
required by the largest key. ‘blockspervalue’ is the number of blocks the user wanted to be
allocated to each hash value. ‘vers’ is the version of the hash table and it is user-defined.

ht_open() returns a NULL on error, or a pointer to a HTBL on success.

void

ht_print(HTBL *hp)

ht_print() prints information about a hash table, including each entry in the bucket directory and
the total number of records in each entry.

void
ht_set_version(HTBL *hp, unsigned long vers)
ht_set_version() sets the version of a hash table.

5.1.5.4 Miscellaneous RPCServer Remote Procedure Calls

int
append_file(char *filename, char *buf, int buflen)
append_file() appends a buffer to an ASCII file.

int

rpc_fetch_file(char *fname, char **buffer, int size, char *hostname, char **error)
rpc_fetch_file() connects to the RPCServer on the specified host, and then fetches a file, filling
the “buffer” variable with the contents of the file.

int

rpc_store_file(char *fname, char *buffer, int size, char *hostname, char **error) |
rpc_store_file() connects to the RPCServer on the specified host, and then writes the contents
of “buffer” to the specified file on the remote host.

SDD FOR ECPN VERSION 2.2 » UNE 1999 27

SOFTWARE DESIGN DESCRIPTION

28

int

rpc_append_file(char *fname, char *buffer, int size, char * hostname, char **error)
rpc_append_file() connects to the RPCServer on the specified host, and then appends the
contents of “buffer” to the specified file on the remote host.

int rpc_msg_annotate(char *msn, char *annotation, char *hostname, char **error)
rpc_msg_annotate() annotates a message object through the RPCServer.

int

read_seg(char *filename, int offset, size_t size, char *buffer, char **error);

read_seg() reads a segment of “size” bytes from a file, beginning at “offset”, and stores the
results in the variable “buffer”.

int

rpc_read_directory(char ***file_list, char *directory, int exclude_subdirs, char *hostname,

char **error);

rpc_read_directory() reads the contents of a directory on a remote host through the RPCServer.
If “exclude_subdirs” is set, only files are included in the resulting list.

int
rpc_delete_file(char *fname, char *hostname, char**error);
rpc_delete_file() connects to the RPCServer on a remote host and deletes the specified file.

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.1.6 Message Object

The message object is the primary storage place for raw and derived information on asingle
message. The message object contains the messagetext, any errors or alerts associated with the
message, alist of actionstaken on the message, aswell asany ECPN administrator annotations.
For the purpose of this description, amessageis defined as al of the text within asingle X12
I SA envelope (ISA/IEA pair). Each message object is stored on disk in an architecture-neutral,
compressed data file, and the datafiles are stored in Daily/<yyyymmdd>/Archives/msg_objs.
APIs exist for accessing each of the individual pieces of a message object (not shown here).

The message sequence number (M SN) uniquely identifies each message within the system. The
format of the MSN is aone-letter site D followed by an eight-digit counter, a slash, the four-
digit year, the two-digit month, and the two-digit day on which the message was received (e.g.,
c00000001/19970721). The eight-digit counter isreset to 1 each day at midnight (Universal
Time Coordinate [UTC]). This MSN format provides for storing a maximum of 99,999,999
ISAs each day.

M essage objects are created by the Router process and updated by the outgoing X12 to UDF
Translator and outgoing communi cations processes. User access to the message object content
is available through several paths, including all applications that use the Journal Data
Summary (JDS) Viewer (described in Section 5.4.7) and the Raw Viewer (described in
Section 5.4.8).

5.1.6.1 Message Object API
The following functions are used to open, update, store, and close.

EC_MSG_OBJ*

open_msg_obj (char *MSN, int flags, int mode);

open_msg_obj() opens a message object (using the format nnnnnnnn/yyyymmdd). The flags
and mode have the same meaning as in open(2). In addition, the message object is locked as
shared mode, exclusive for read-only mode, or read-write opens mode, respectively.

int
store_msg_obj (char *MSN, EC_ MSG_OBJ* m);
store_msg_obj() writes the given message object to disk, closesit, and freesit.

int
close_msg_obj (EC_MSG_OBJ* m);
close_msg_obj() closes a message object and freesiit.

EC_MSG_OBJ*

alloc_msg_obj (void);

alloc_msg_obj() creates a new message object in memory only (not associated with afile).
store_msg_obj() must be called to save that new message object to disk.

SDD FOR ECPN VERSION 2.2 » UNE 1999 29

SOFTWARE DESIGN DESCRIPTION FOR ECPN

int

flush_msg_obj (EC_MSG_OBJ* m);

flush_msg_obj() writes an already open message object to disk. flush_msg_obj() simply calls
write_msg_obj().

int
write_msg_obj (EC_MSG_OBJ* m, int fd);
write_msg_obj() writes a message object to disk.

int

detach_msg_obj (EC_MSG_OBJ* m);

detach_msg_obj() detaches amessage object from itsfile, leaving only acopy in memory. If a
message object isopen read-write, it isflushed to disk beforeit isdetached. This should be used
by calling routines that only need a snapshot of the message object.

EC_MSG_OBJ*
reopen_msg_obj (EC_MSG_OBJ* m, char *new_name, int flags, int mode);

reopen_msg_obj() assigns amessage object to anew file, and then closesthe old file. Thiswill
work even if the old object is only memory-resident.

free_msg_obj(EC_MSG_OBJ*m)
free_msg_obj() frees up any memory associated with a message object.

5.1.6.2 Message Object Field Descriptions

Table 5-1 Message Object Fields

Field Name Type Description
version int Version number of the message object database
open_flags int open() flags--used internally
open_fd int File descriptor for message object--used internally
segments flist_segs Packages the following pieces (indicated by
indention):
_type int Numeric hash value of segment type. Segment type

is stored as an integer to provide fast segment
lookups. The HASH macro converts a segment
name into a hash value. Thishash valueis
generated using a shift-left hash function on the
segment ID string (e.g., an “ISA” segment ID
would generate a seg_type value of ((‘I' << 24)|+
('S’ << 16) + (‘A’ << 8) +\0)

seg_content BINARYSTRING | Contains the entire X12 segment through the
segment terminator (e.g., an ISA “line”)

30 SDD FOR ECPN VERSION 2.2 « JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-1 Message Object Fields (Continued)

Field Name Type Description
errors flist_errs Packages the following pieces (indicated by

indention):

err_type int Numeric value depicting thetype of error (e.g., ISA
Parse Error). Thisvalueis derived from a CSC
mask and aspecific error value. The CSC masksare
used throughout processing to identify the origin of
an error. For alist of possible mask values, see
Table 5-2. The specific error value is set but not
currently used in processing.

Msg_seg_num int Index of the segment in msg_seg[] in which the
error was identified

msg_seg_offset int Offset of the segment in msg_seg[] in which the
error was identified

error_expansion wrapstring Description string associated with theerr_type. For
alist of possible values, see Table 5-2.

chan_name wrapstring Outgoing channel where error occurred

x12 vals x12_obj Packages the following pieces (indicated by

indention):

record int Record number of message object

source int Input channel mask

msgtype wrapstring Type of channel on which the message was
originally received. Possible values:
X12, DBMS 1.0, DIFMS, DWAS, GAFS, IFAS,
IPC, ITIMP, LEGACY, SAACONS, SIFS, SPS,
Stanfins 1.0, STARS.

msn wrapstring M essage sequence number (format: nnnnnnnn/
yyyymmdd)

mask int Bitmask (O=int/ext, 1=user/non-user, 2=ascii/
binary data)

precedence int (Unused)

direction int VAN->GW or GW->VAN

logname wrapstring Relative path for message log

SrcChnl wrapstring Incoming channel name

InCharCount int Number of bytes in incoming source message

SrcChnl Xref wrapstring XREF (3-letter identifier) associated with source

channel

SDD FOR ECPN VERSION 2.2 » UNE 1999

31

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-1 Message Object Fields (Continued)

Field Name Type Description
ArchFilename wrapstring Filename of compression file that the incoming

communications process used to store the original
received content

RemotelnFileName | wrapstring Incoming filename

IsaNum int ISA Control Number (ICN) (X12 ISA13)

ISATo wrapstring Receiver Interchange (X12 |SA0B)

ISAFrom wrapstring Sender Interchange (X12 ISA06)

ElemSep u_char Element Separator (extracted from the 4" byte
position of the incoming ISA segment)

SubElemSep u_char Subelement Separator (X12 1SA16)

SegTerm u_char Segment Terminator (extracted from the 106" byte
position of the incoming ISA segment)

gs list flist x12_gs Packages the following pieces (indicated by
indention):

flags long Bitmask indicating messages that were generated
by the Trandlator (e.g., 824, 997)

ai_qud wrapstring I SA Line Authorization Information Qualifier
(X121SA01)

ai wrapstring ISA Line Authorization Information (X12 ISAQ2)

si_qua wrapstring I SA Line Security Information Qualifier (X12
ISA03)

si wrapstring ISA Line Security Information (X12 1 SA04)

send_qual wrapstring Sender Interchange Qualifier (X12 | SA05)

recv_qual wrapstring Receiver Interchange Qualifier (X12 1SAQ7)

i_dtg int Interchange DTG (integer representation of X12
ISA09 and X12 ISA10 fields)

ics_id u_char Interchange Control Standards ID (X12 1SA11)

ic_ver wrapstring Interchange Control Version Number (X12 I1SA12)

ack u_char Acknowledgment Reguested Indicator (X12
ISA14)

test u_char Test Indicator (X12 1SA15)

i_date str wrapstring Interchange Date String (X12 1SAQ9)

i_time_str wrapstring Interchange Time String (X12 1SA10)

32 SDD FOR ECPN VERSION 2.2 « JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-1 Message Object Fields (Continued)

Field Name Type Description
InUDFFilename wrapstring Name of incoming UDF from which this message
object was built
section int Section number for this X12 with respect to the
group
tot_sections int Total number of other X12sin the group
section_keeper string Master X12 for the group
section_list string [] List of other MSNsin the group
GS_index int Index of the entry in msg_seg[] that contains this
GS segment
GE_index int Index of the entry in msg_seg that containsthis GE
segment
GrpCtrINum int Group Control Number (X12 GS06)
GSTo wrapstring GS Receiver ID (X12 GS03)
GSFrom wrapstring GS Sender ID (X12 GS02)
fi_code wrapstring Functional Identifier Code (X12 GS01)
dtg int Date Time Group (DTG)
ra_code wrapstring Responsible Agency Code (X12 GS07)
vri_code wrapstring Version/Release/Industry ID (X12 GS08)
st list flist x12 st Anst_listarray iscontained within each gs list and
contains information on one of the ST segments.
date_str wrapstring DTG Date String (X12 GS04)
time_str wrapstring DTG Time String (X12 GS05)
ST_index int Index of entry in msg_seq[] that contains this ST
segment
SE index int Index of entry in msg_seg[] that contains this SE
segment
TransType int Numeric representation of the X 12 transaction ID
(STO01) (e.g., 850, 843, 836)
TransNum wrapstring Transaction Control Number (X12 ST02)
QualDtg int Date/time qualifier for BQR and BQT segments
(X12 BQTO03 and BQRO3)
PurchaseOrder | wrapstring Purchase Order Number for aBEG segment (X12
BEGO03)

SDD FOR ECPN VERSION 2.2 » UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-1 Message Object Fields (Continued)

Field Name Type Description
solicitation wrapstring X12 Solicitation Number (X12 BQT02 and
BQR02)
incoming_udf UDF vals Containsinformation about incoming UDF to X12
tranglation
old_incoming_udf | flist_char Original incoming UDF
error_type int Tranglation error (UDF_OK, TPDB_ERR, etc.)
xlate rpt wrapstring Report data from translation
incoming_udf BINARYSTRING | Incoming UDF (empty for outgoing)
linkages flist_linkages Linksto other message objects
msn wrapstring MSN to which the message object is linked
type u_char Type of link (824, 997, etc.)
additional_info wrapstring Descriptive information about the link
oper_annotations flist_annot One entry exists for each annotation made to this
message. Packages the following pieces (indicated
by indention):
annot_text wrapstring Annotation text entered by the ECPN administrator
oper_name wrapstring Name of the ECPN administrator making the
annotation
annot_time long Time that the annotation was made
host_name wrapstring Host from which the annotation was made
err_q_index int Index of this message object in error queue (-1 if
not queued)
actions flist MSG_ List of actions taken with this message object
ACTION
type ACTION_TYPE Type of action taken. Possible values:
AT_RECEIVE, AT_ROUTE, AT_PROCESS,
AT_REXLATE, AT_REXMIT, AT_OPXMIT
(future development), AT_EQ_DELETE,
AT_MOD_TPDB, AT_X122UDF_XLATE,
AT_X122UDF_XLATE, AT_SYSGEN,
AT_REROUTE, AT_CHANQ_ DEL,
AT_UDF_ROUTE, AT_ROUTE_CANCEL,
AT_ERROR, AT_OTHERS
time long Time the status was last set

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-1 Message Object Fields (Continued)

Field Name

Type

Description

status

ACTION_STATUS

Status of action. Possible values;
AS COMPLETE, AS FAILURE.

identifier

int

Numeric value that provides a cross-reference
between theitemsintheactionslist and itemsin the
routes list. Not applicable for non-route/reroute
actions.

str

wrapstring

Contains expansion information (e.g., ECPN
administrator name/host, channel name, etc.)

str2

wrapstring

Contains additional expansion information

routes

flis MSG_ROUTE

List of routes in the message object

chnl_name

wrapstring

Channel routed to

subaddr

flist_wrapstring

For arouteto an email channel, thisarray of strings
holds the complete list of addressees astaken from
the “TO:” list in the email channel configuration
This field is not applicable for a non-email chani
route.

hel

identifier

int

A unique integer value is assigned for each route in

a message object. This value is also used to by
gueue records for sending the message object
outgoing communications process or the outgol
translator, thereby establishing a cross-referen

ild
0 an
ng
Ce.

reason

ROUTE_REASON

Reason for route (i.e., GS-TO). Valid values:
RR_NOT_APP, RR_GS_FROM, RR_GS_TO,
RR_ISA_FROM, RR_ISA_TO,
RR_FILE_PATTERN_CASE,
RR_FILE_PATTERN_NOCASE,
RR_ALL_CHAN, RR_SYS_GEN,
RR_RETRANSMIT, RR_MSG_REPORT,
RR_MSG_REPORT_REXMIT,
RR_SYS_GEN_ADMIN

gs sts

flist_ GS_ST

List of GS_ST records within the route. Each ¢
represents a file to be transmitted.

ne

old time

long

Time that status was last set

gs

int

GS index (zero-based) of the gs_list portion of
message object. A value of -1 denotes all GSs il
message object.

the
the

SDD FOR ECPN VERSION 2.2 » UNE 1999

35

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-1 Message Object Fields (Continued)

Field Name Type Description

st int ST index (zero-based) of the st_list within the
aboveindexed gs list record. A value of -1 denotes
all STswithinthe gs list record.

old_subaddr_bm | bitmask Bitmask denoting which indicesin the route record
subaddresseelist aretargetedinthisparticular route
portion

old_filename wrapstring Name (or for email, the message ID) of the
transmitted file

old_status ROUTE_STATUS | Statusof route (transmitted/pending). Valid values:

RT_QUEUED, RT_XMITTING,
RT_COMPLETE, RT_FAILURE,
RT_CANCELLED, RT_OPDEL

old_transmitter_ | int PID of the communication process handling the
pid transmission
old_ack 997 msn_link Link to the 997 generated from this route
msn wrapstring M essage Sequence Number
type u_char Type of ack (e.g., 997, 824)
additional_info | wrapstring Descriptive information
route_type ROUTE_TYPE Type of route. Vaid values: RTY PE_NORMAL,
RTYPE_ACK997, RTYPE_CC
msn_linkages flist_linkages Links to other message objects
msn wrapstring MSN to which the message object is linked
type u_char Type of link (e.g., 824, 997)
additional_info | wrapstring Descriptive information
time long Time that status was last sent
filename wrapstring Name (or for email, the message ID) of the
transmitted file
status ROUTE_STATUS | Statusof route (transmitted/pending). Valid values:

RT_QUEUED, RT_XMITTING,
RT_COMPLETE, RT_FAILURE,
RT_CANCELLED, RT_OPDEL

transmitter_pid int PID of the communication process handling the
transmission
msg_report msg_rpt Information about a message report object
text flist_char Contents of the report

36

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-1 Message Object Fields (Continued)

Field Name Type Description
msgtype wrapstring Report type
channel wrapstring Relevant channel
contents int Bitmask field
datestr wrapstring Date of the report
aerts flist_alerts List of aerts generated
aert_class wrapstring Alert class
name wrapstring Alert name
msg wrapstring M essage text
key wrapstring MSN or channel name
time long Time that the alert was generated
channel wrapstring Relevant channel
variables flist FILENAME_ [Information about the filename variables available
VAR for use
name wrapstring Name by which the variableis referenced
value wrapstring Vaue associated with the variable
identifier int Route identifier with which the variable is
associated
target_chan wrapstring Used for routing/rerouting message objects

SDD FOR ECPN VERSION 2.2 » UNE 1999

37

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-2 Message Object err_type/error_expansion Values

Valueof err_type CSC Mask List of error_expansion Values

DEC MASK “General Partition Error”

“Partition Error. Possible incorrect length of 1st seg.”
“Segterm Partition Error”

“Segment Incomplete Partition Error”
“Start of Message Partition Error”

“ISA segment out of order”

“ISA segment parse error”

“IEA segment out of order”

“IEA segment parse error”

“ISA/IEA numbers don’t match”

“Incorrect GS count in IEA segment”

“GS segment out of order”

“GS segment parse error”

“GE segment out of order”

“GE segment parse error”

“GS/GE group cutler numbers don’t match”
“Incorrect ST count in GE segment”

“ST segment out of order”

“ST segment parse error”

“SE segment out of order”

“SE segment parse error”

“ST/SE transaction numbers don’t match”
“SE has incorrect segment count”

“BQT segment out of order”

“BQT segment parse error”

“BQR segment out of order”

“BQR segment parse error”

“BEG segment out of order”

“BEG segment parse error”
“BCO segment out of order
“BCO segment parse error”

“PO1 segment out of order”

“BIG segment out of order”

“BIG segment parse error”

“Segment out of order”

“Message Incomplete (ISA/GS/ST still active at end of
message)”

“Message ISA count = 0”

“Invalid ST_Segment”

“Invalid DUNS value”

“Bad 838 version number”

38 SDD FOR ECPN VERSION 2.2 « JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-2 Message Object err_type/error_expansion Values (Continued)

Valueof err_type CSC Mask

List of error_expansion Values

ROUTE_MASK “No Primary Route Available.”
“No Reply Route Available.”
“Source Channel Does Not Exist.”
“Unknown Filename Variable”

XLATE_MASK “Failed TPDB lookup”

“Invalid UDF error”
“Empty Message”
“Source Channel Does Not Exist.”

OUT_COMMS_MASK

“Failed SEGTERM conversion.”
“Failed on Addressee List or Content.”
“Cleo ASCII data rejection.”

ACK_MASK “997 Negative Acknowledgment”
“997 Unable to Correlate”
OP_MASK “Operator Delete from Channel Queue”

SDD FOR ECPN VERSION 2.2 » UNE 1999

39

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.2 Communications

The Communications CSC is responsible for managing connections between ECPN and
remote systems. The ECPN CSCI manages communications using the channel concept. Each
remote site that ECPN connectsto is designated as a separate channel. The channel contains
information about connecting to a site, such as communications protocol, message type (X12
or UDF), connection frequency, and communications-specific information (e.g., email address
for an email channel).

The Communications CSC consists of the following SCSCs:

* EditChannels

« Comms

* FTP Sessions

» File Transfer Protocol Daemon (ftpd)

» Electronic Send Electronic Mail (email_meta/email_send)
» Electronic Mail Daemon (emaild)

« Channel Status

* Incoming X12 Queue

» Outgoing Communication Queues

e Channel Database

5.2.1 EditChannels

The EditChannels application provides a GUI for adding, deleting, and modifying
communication channelsin the channel database and displaying the current channel state as set
by the ECPN administrator. The channel database (described in Section 5.2.10) defines the
operating characteristics of each communication interface. (EditChannels accessesthe channel
database via a socket interface to the RPCServer, as described in Section 5.1.1). The
RPCServer actually performs modifications to the channel database as requested by
EditChannels.

5.2.2 Comms

The comms process is started at system startup and is responsible for scheduling and executing
communications sessions for FTP, ZMODEM, Kermit, and CLEO channels. It keeps an
updated schedule of session times for all active channels and manages the child processes that
handle individual sessions.

40 SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.2.2.1 Scheduling Sessions

At startup, the comms process generates a “schedule” of sessions for alttive channels

(excluding email channels). Each schedule entry contains the channels database record nimber
and a scheduled start time. The schedule is kept in ascending order, based on start time.|Thus,
the next communication session to start is always the first entry in the schedule. (Scheduje
entries are added when a channel is activated or a communication session starts. Schedgle
entries are deleted when a channel is deactivated or a communication session ends.) Afte§ each
schedule maodification, the timer indicating when the next session is to start is reset.

To view the schedule, send a SIGUSR?2 to the parent comms process. The schedule will pe
printed in the comms debug log.

5.2.2.2 Communications Sessions

The comms process uses child processes to execute communication sessions. If there aje no
child processes currently running, or if all child processes are busy executing sessions, ajnew
child process is spawned to execute the communication session. Otherwise, the first “waiting”

child process is instructed to execute the communication session. An unlimited number o
children may be spawned. However, if a child process remains inactive for a certain amogint
time (as defined by the registry entry “comms.ChildCleanuplnterval”), it will be terminated
with a SIGTERM signal by the parent comms process.

Upon completion of a communication session, the comms child process notifies the comrhs
parent process via an event queue. The comms parent then schedules the next session (|f the
channel is still on) to start at the current time plus channel cycle time (in seconds). If the
scheduled time is outside the communications window for the channel, the next session ig
scheduled to start at the beginning of the communications window for the following day.

If a communications session fails to connect, then the comms child will keep trying the
connection until the number of retries set for the channel is exhausted. Between each retjy
attempt, the comms child will wait the specified retry_interval. If all retry attempts fail, then §n
alert is generated (either “FTP CONNECT” or “DIAL FAILED"). The comms parent is the
notified that the session is complete, and the next session is scheduled.

SDD FOR ECPN VERSION 2.2 » UNE 1999 41

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.2.2.3 Comms Children Database

Comms uses an RPC database, CommsChildren, to communicate between the parent and child
processes. The CommsChildren database contains exactly one entry for each comms child

process. Each entry contains the child’'s PID and the channel database record number for the
communication session for which that child is currently executing. If the child is currently
“waiting” (i.e., idle), the channel database record number will be *-1'. To view the entries in
the CommsChildren database, run “CommsChildrenDB_text” from the command line.

When a child comms process is spawned, it reads the channel database record number from the
CommsChildren database to determine the channel for which it is to execute a session. If the
channel is a ZMODEM, Kermit, or CLEO channel, a serial session is run. If it is an FTP
channel, an FTP session is run.

5.2.2.4 Seria Sessions

42

Before a serial session is started, the comms process selects an available device from those
listed in the KermitDevices or CLEODevices files. If no device is available, the channel will
wait until one becomes available. Availability of devices is controlled through the use of
semaphores.

Once a device has been selected, ReadOutChnlQueue() is called iteratively to build a list of
files to transmit. Each call to ReadOutChnlQueue() call returns a single file formatted for
output. For multiple mode channels (e.g., Kermit, ZMODEM), this process consumes (at most)
one channel queue record. For batch mode channels (e.g., CLEO), this process consumes all
records on the queue that match the batch criteria (e.g., source channel cross-reference) or stops
after the size of the file reaches the byte limit set in the channel’s configuration. Each queue
record is processed as follows:

» Using the route identifier from the channel queue record, the process gathers all routes that
have a matching identifier and a status of “not complete”.

« For an X12 transmit channel, the routes are used to identify the GSs and STs in the X12
message that are intended for transmit on the target channel. These GSs and STs are placed
into ISA/IEA wrapped messages as follows:

* The ISA/IEA wrappers from the original received X12 are used.

» Field delimiters, separators, and/or sub-element separators are replaced as defined in
the segment terminator replacement for the channel.

* The ISA05/06 and ISA 07/08 fields are replaced with the values specified in the
channel configuration record.

» If specified in the channel configuration record, the file content is blocked into fixed
length records (new line separated).

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

e For CLEO channels set to transmit ASCII only, the message content is searched for
characters that do not map from ASCII to EBCDIC (Extended Binary Coded Decimal
Interchange Code) or that cause adverse behavior in transmit stream handling by the
3780 protocol. If these characters are found, the associated channel record is
dequeued, and the message object is placed in the error queue. L

« For a UDF channel, the file is returned as identified in the channel queue record. If th
channel is a CLEO channel set to ASCII transfer mode, the file is first parsed for
unprintable or non-whitespace characters. If these characters are found, the associated
channel record is dequeued, and the message object is placed in the error queue.

Comms invokes either the kermit program (for Kermit and ZMODEM channels) or the
3780Plus program (for CLEO channels), using the script and initialization file for the channel.
The steps performed by comms depend on each channel’'s modem script. For Kermit and
ZMODEM channels, comms determines success or failure by processing data written to
STDOUT by the kermit program while it processes the script. For the list of output strings
processed from the Kermit and ZMODEM scripts,Seetion 5.2.2.5~or CLEO channels, the

exit status of the 3780Plus program determines the success or failure of the file transfer.

Once the communications session is complete, comms removes the successfully transmitted
messages from the channel’s outgoing queue and updates the status of the messages in|the
message log and channel log. If a message fails transmission, comms leaves the messagl in the
outgoing channel queue for the next cycle and does not update the message log or channel log.

Comms then checks the incoming (InRaw) directory for messages received during the
communications session. If any messages are found, they are logged in the ChannelLog and
then placed in the incoming X12 or translation queue, depending on the message type
supported by the channel.

Comms generates alerts for communication problems via the standard API, proc-alert().

5.2.2.5 Kermit

The kermit program is invoked by comms when a communications session for either a Kermit
or ZMODEM channel is started. The functions that kermit performs depend on each channel’s
script, which should at a minimum, consist of these components: login, password, download
files, upload files, and exit. File download success is determined by receiving the following
string from STDOUT: “<filename> Successfully.” File upload success is determined by signals
inherent in the Kermit protocol.

SDD FOR ECPN VERSION 2.2 » UNE 1999 43

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Connection, authentication, file transmit, and file receive actions are performed by the kermit
program, which is driven by ajob script. The status of the connection and the status of each
transmitted file is determined by parsing the output of the kermit program while executing the
job script. Table 5-3 detail sthe strings parsed and the actions taken during this parse operation.
The existence of filesin the local receive directory after a connection denotes a successful
receive. The files are queued to either the incoming X 12 queue or the translation queue,
depending on the message type supported by the channel.

Table 5-3 Kermit Operation String/Action Relationship

String

Action

“Successfully”

The prior string is assumed to be a successfully sent file,

and all messages contained within are marked as

successfully transmitted and dequeued from the channel.

“send Unsuccessful

The prior string is assumed to be an unsuccessful

y sent

file, and all messages contained within are left queued to

the channel queue.

“‘NO CARRIER”

An alarm is set for 60 seconds. If after 60 seconds,
kermit process is still executing, the job is assumed t
hung, so it is terminated. All messages contained wi
the transmit files that have not been reported as
successful are left queued to the channel.

the
o be
thin

“line for INPUT”

The process status is treated as a dial failure, and al

messages contained within the transmit files are leff
gueued to the channel.

“Cannot dial phone”

The process status is treated as a dial failure, and
messages contained within the transmit files are left
gueued to the channel.

all

“ABORT”

The process status is treated as a dial failure, and a
messages contained within the transmit files are left
gueued to the channel.

Kermit channel s support both batch and multiple file transfer. Filenames are constructed from
variables and characters as follows:

Variables (within braces{}):

« {jul} - Julian Date@01 to 366)

e {hr} - Hour©0to23)

e {nmn} - Minute 00 to59)

« {sec} - Second@0 to59)

« {tine} - hourand minuteQ0 to23) (00 to 59)
* {non} - Month 01lto12)

« {day} - Day(@©1

to31)

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

e {year} - 4-digityear (e.9.1997)

« {yr} - 2-digityear (e.9.97)

« {sxrf} - Channel reference for the message’s source

« {drxf} - Channel reference for the message’s destination
e {c} - Counter number (up to 8 digits)

- {cent} - 2-digit century (e.g., 21)

Note that additional variables may be valid for a specific message type. (For example, the
{saacons-sid} variable is valid iISAACONS is the selected message type.) For a list of valid
variables for a particular message type, se®HE8CRIPTION box of theTRANSLATION

tab of the edit channel window (described in $udtware User’s Guide for Electronic
Commerce Processing Node).

Characters:

Other than variables and the braces that enclose those variables ({ }), only alphanumeric
characters and the following symbols may be entered in afile name. (Spaces are not allowed.)

e Hyphen (-)

e Period ()
e Underscore ()

The following fields can be used to configure a Kermit Channel:

Table 5-4 Kermit Channel Fields (AsyncStruct) |
Field Name Type Description

device char [DEVICE_LEN] Modem device

recv_packet_length int Size of receive packets, in bytes

send_packet_length int Size of transmit packets, in bytes

baud_rate int Modem baud rate

char_size int 7 or 8 bits

parity enum ParityType Possible Values: None, Even, Qdd,
Mark, Space

window_size int File transaction packet window size

dial_timeout int Dial timeout in seconds

block int Error checking level

byte-limit int Maximum size per batch file

receive_eop int Character to specify end-of-packet

escape_char int Character to specify escape
character

phone char [MAX_PHONE_LEN] Phone number to dial

SDD FOR ECPN VERSION 2.2 » UNE 1999 45

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-4 Kermit Channel Fields (AsyncStruct) (Continued)

Field Name Type Description
outfile char [MAX_OUTFILE_LEN] | Name of file to transmit
login char [MAX_LOGIN_LEN] Login ID to use
passwd char [MAX_PASSWD_LEN] Password to use
indir char [MAX_INDIR_LEN] Incoming directory
outdir char [MAX_OUT_DIR_LEN]| Outgoing directory

5.2.2.6 ZMODEM

ZMODEM isinvoked within a Kermit script by comms. Unlike Kermit, ZMODEM performs
the upload and download of files using the rz and sz programs respectively. All other functions
are the same as those for a Kermit channel (described in Section 5.2.2.5).

522.7CLEO

CLEO (3780Plus) isinvoked by comms when a communications session for a CLEO channel

is started. The functions that CLEO performs depend on each channel’s script, which should at
a minimum, consist of these components: login, password, download files, upload files, and
exit. The status of CLEO transmissions is based on the return codes CLEO sends to STDOUT.
If no error code is returned and the session ends normally, transmitted messages may be
assumed successful.

The status of CLEO file transmission is a function of the exit status of the 3780PIlus execution.
An exit status of zero denotes success, and all messages contained within the single transmit
file are marked as successfully transmitted and are then dequeued from the channel queue. Any
other exit status indicates failure, and all messages contained within the single transmit file
remain queued to the channel. The existence of a file in the local receive directory after a
connection denotes a successful receive. The received file is queued to either the incoming X12
gueue or the translation queue, depending on the message type supported by the channel.

46 SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

CLEO channels support only batch file transfer with a filename assigned in the edit channel

2r 5

er 5

r5

window.
Table 5-5 CLEO Channel Fields (CleoStruct)
Field Name Type Description
device char [DEVICE_ Modem device for the channel
LEN]
repeat_limit int See 3780Plus User’s Guide, Chapte
rexmit_limit int See 3780Plus User’s Guide, Chapt
wait_limit int See 3780Plus User's Guide, Chapte
delay_limit int See 3780Plus User’'s Guide, Chapt

er5

terminal_type

enum TerminalType

)

See 3780Plus User’s Guide, Chg

pter 5

ter5

ter 5

pter 5

pter 5

ers

ter5

2r 5

erb

compress_space int See 3780Plus User’'s Guide, Chapter 5
xmit_blocking_factor | int See 3780PIlus User’'s Guide, Chap
modem_type int See 3780Plus User’'s Guide, Chap
suppress_new_line int See 3780Plus User’'s Guide, Cha
protocol enum CleoProtocol| See 3780Plus User’s Guide, Cha
byte_limit int See 3780Plus User’s Guide, Chapt
xmit_record_size int See 3780Plus User’s Guide, Chap
bid_limit int See 3780Plus User’s Guide, Chaptt
recv_limit int See 3780Plus User’s Guide, Chapt
5.2.3 FTP Sessions

Scheduled FTP sessions exist for outgoing FTP communications only. (Note that the file
transfer protocol daemon, ftpd, discussed in Section 5.2.4, managesthereceipt of FTPfilesthat
are pushed to ECPN.) FTP sessions are executed by a comms child process each time a

scheduled on is started for an FTP channel. FTP ons call ReadOutChnlQueue()
iteratively to build and transmit files.

Each call to ReadOutChnlQueue() returnsasinglefileformatted for output. Multiple-modefile
creation consumes (at most) one channel queue record. Batch mode file creation consumes all

records on the queue that match the batch criteria(e.g., source channel cross-reference) or stops
after the size of the created file reaches the byte limit for the channel. Each queue record is

processed as follows:

SDD FOR ECPN VERSION 2.2 » UNE 1999

47

SOFTWARE DESIGN DESCRIPTION FOR ECPN

» Using the route identifier from the channel queue record, the process gathers all routes that
have a matching identifier and a status of “not complete”.

» For an X12 transmit channel, the routes are used to identify the GSs and STs in the X12
message that are intended for transmit on the target channel. These GSs and STs are placed
into ISA/IEA wrapped messages as follows:

* The ISA/IEA wrappers from the original received X12 are used.

» Field delimiters, separators, and/or sub-element separators are replaced as defined in
the segment terminator replacement for the channel.

* The ISA05/06 and ISAQ7/08 fields are replaced with the values specified in the
channel configuration record.

» If specified in the channel configuration record, the file content is blocked into fixed
length records (new line separated).

» For a UDF channel, the file is returned as identified in the channel queue record.

If there are no messages in the channel’s outgoing queue and the channel is set to push only,
comms does not initiate a connection but will wait until the next session and check again. At
that time, if there are messages queued for the channel, comms initiates an FTP connection
using the site-specific information contained in the channel database (described in

Section 5.2.1)) If set to push/pull, comms will first upload (pull) remote files destined for
ECPN. Upon successful retrieval and local queue storage of each file, comms will remove the
file from the remote system. Comms will then download (push) any files destined for the
remote system.

After each successful file send, comms deletes the successfully sent message(s) contained in
the file from the channel’s outgoing queue and updates the status of the message(s) in the
message log and channel log. If a message fails transmission, comms leaves the message in the
outgoing channel queue for the next cycle and does not update the message log or channel log.
Uploaded files are placed in either the incoming X12 queue or the incoming translation queue,
depending on the channel’'s message type.

Comms performs the following steps during each communications session:

1. Connects to the remote site’s IP address using the login provided (USER <username>).

2. Provides password and/or account, in any order, as prompted (PASS <password> and
ACCT <account>). Note that comms will issue the password and account up to five times

as prompted.

3. Sets the file transfer type as ASCII or binary.

48 SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

4. Issues achange to the working directory, if necessary (CWD).
When pulling files on an FTP channel, comms performs the following functions:

5. Obtainsalist of filesin the pull directory, using full path (NLST) . If local globbing is set,
thisaction returns all files. If remote globbing is set, only those files matching the specific
remote mask are returned.

6. Processestheligt, filtering out listing headers and local and parent directory tokens, and
then builds the full path/name of each fileto pull.

7. Receivesthefiles from the remote system, using the full path (RETR).

8. After thefileisreceived, confirmed, and locally stored and queued, deletes the file on the
remote system (DELE). If “delete from pull dir” is configured, the pull directory/container
is also removed from the remote system.

When pushing files on an FTP channel, comms performs the following functions:

9. Sends any site commands entered in the channel configuration window (described in
Section 5.2.1L

10. If the trigger mode is TRG_LOCK, transfers the trigger lock file.

11. Transfers the data file as the generated filename using STOR or APPE, depending on the
append or push setting. If the trigger mode is TRG_RENAME, transfers the data file as the
generated trigger name and then renames the sent data file to the generated data file hame.

12. If the trigger mode is TRG_CREATE, transfers the trigger file after the data file transfer is
complete.

Once FTP file transfer is complete, comms:
13. Logs out of the remote system (QUIT).

FTP sessions support both multiple and batch file transfer. Filenames are constructed from
variables and characters as follows:

Variables (within braces {}):

e {jul} - Julian Date@01 to366)

e {hr} - Hour Q0 to23)

e {mn} - Minute 00 to59)

e {sec} - Second@0 to59)

« {tinme} - hourand minuteQQ to23) (00 to59)
« {nmon} - Month 01to12)

« {day} - Day(@01to31)

e {year} - A4-digityear (e.9.1997)

SDD FOR ECPN VERSION 2.2 » UNE 1999 49

SOFTWARE DESIGN DESCRIPTION FOR ECPN

50

o {yr} - 2-digityear (e.9.97)

o« {sxrf} - Channel reference for the message’s source

« {drxf} - Channel reference for the message’s destination
« {c} - Counter number (up to 8 digits)

« {cent} - 2-digitcentury (e.g., 21)

Note that additional variables may be valid for a specific message type. (For example, the
{saacons-sid} variable is valid ISAACONS is the selected message type.) For a list of valid
variables for a particular message type, se®tB8CRIPTION box of theTRANSLATION

tab of the edit channel window (described in 8udtware User's Guide for Electronic
Commerce Processing Node).

Characters:

Other than variables and the braces that enclose those variables ({ }), only aphanumeric
characters and the following symbols may be entered in afile name. (Spaces are not allowed.)

* Hyphen (-)
e Period ()
» Underscore ()

If a message fails transmission, comms leaves the message in the outgoing channel queue for
the next cycle. If a message is sent successfully, comms removes the message from the
outgoing channel queue and updates both the message log and channel log to reflect successful
transmission.

Table 5-6 FTP Channel Fields (FTPSruct)

Field Name Type Description
hostname char [MAX_HOSTNAME_LEN] Local host name for channel
login_id char [MAX_LOGIN_LEN] Remote login ID
password char [MAX_PASSWD_LEN] Remote password
workdir char [MAX_DIR_LEN] (Optional) Directory to cd to

for pushing/pulling files

in_dir char [MAX_DIR_LEN] Remote download directory
out_dir char [MAX_DIR_LEN] Remote upload directory
filemask char[MAX_OUTFILE_LEN] String to be sent to remote

system (if remote globbing
set), or used locally (if local
globbing set to filter selection
of files to receive)

trigger_convention| enum TriggerStyle None, Rename, Lock, or
Create
trigdir char [MAX_DIR_LEN] Remote trigger directory/name

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-6 FTP Channel Fields (FTPSruct) (Continued)

Field Name

Type

Description

site_cmd

char [MAX_SITE_CMD_LEN]

String to be sent as site
command before each file
transfer to set values such as
record length

glob_option

int

Whether to do file name
expansion, and if so, whether
to doit locally or remotely

account

char [MAX_ACCOUNT_LEN]

Account information

appe_on_push

int

Use append command vice
store command on transfer

del_pulldir

int

Whether to delete the pull
directory/container after pull

byte limit

int

Up to MaxInt. Max size of a
batch file to be sent

To generate alerts for communication problems, comms connects to the alert daemon. (For a
completelist of alerts, see Appendix A.)

SDD FOR ECPN VERSION 2.2 » UNE 1999

51

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.2.4 File Transfer Protocol Daemon (ftpd)

Theftpd processes messagesthat are pushed to ECPN. No remote systemisallowed to pull data

from ECPN. The daemon is responsible for managing the connection request by the remote

system and restricting the all owable functionsto only those necessary to transfer filesto ECPN.

The ftpd establishes a “jail,” so that a remote user may not issue a change directory to any
directory above the login directory. (The login directory is /h/data/global/EC/Messages/InRaw/
<Channel Name>.) Once the remote site has finished uploading the files, the ftpd passes the
messages to the incoming X12 or translation queue, depending on the channel’s message type
setting. To handle simultaneous FTP requests, the daemon can fork multiple processes.

5.2.5 Email Send Electronic Mail (email_meta/email_send)

52

The ability to transmit files via email is handled by two processes: email_meta and email_send.
The Router places all outgoing message objects for all email channels on a single “meta”
gueue. The email_meta process consumes the single (meta) email queue and generates the
email domain queues and the email stats database, based on the message destination domains.
These email_send processes use the email_stats database and record locking to coordinate the
consumption of the different domain queues.

The addressee list in an email channel configuration can be a list of several different emalil
addresses, separated by commas. Each address has a username, and an @ symbol, followed by
a domain name. The example addressee list—johndoe@acme.com, janedoe @widgets.net,
ecpn@tools.acme.com, joeshmo@widgets.net—actually contains four addresses and three
domains (acme.com, tools.acme.com, and widgets.net). With this hypothetical addressee list

for channel EMAIL1, each message sent out channel EMAIL1 will actually be sent as three
separate files, each to a different domain. (The file sent to widgets.net will have two
addressees).

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

It isthe responsibility of the email_meta process to take a message bound for the hypothetical
EMAIL1 channel and vector it to the three different domain queues for processing by the
email_send processes. The email_meta process also creates and manages the email _stats
database. This database serves the dual purpose of feeding the outgoing email queue viewer
application (described in Section 5.4.10), aswell asthe email_send processes. The email_send
processes use record-level locking on the database entries to coordinate consumption among
themselves. For a description of the email stats database, see Table 5-7.

Table 5-7 Email Stats DB Fields (EMAIL_STATS) I

Field Name Type Description

domain char [DB_MAXEMAILLEN] Domain name, which is |
everything after the @ symbol in
an email address

num_in_queue int Number of records in the
corresponding domain queue

last_tot unsigned long Last successful transmit for the |
domain

last_attempt unsigned long Last transmit attempt for the |
domain

state int Busy, idle

on_off int Whether domain is on or off

cycle_thresh int Number of failures before alerting |

thresh_enabled int Whether connection failure alertis
on or off

The email_send processes are responsible for consuming the email domain queues by

packaging and sending the queued messages in email filesusing the SMTP protocol. MIME is |
an optional field in the EDIT EMAIL window. If MIME is selected, each message is sent asa
separate, base-64 MIME encoded attachment. Sites that wish to send and receive interchanges

as MIME attachments must notify ECPN in advance. For MIME messages, the content-type

will be application/edi-x12. With each attempt to processaqueueentry, theemail_send process |
also updatesthefollowing email stats databasefields: Last TOT, Last Attempt, num_in_queue,

and state.

The correlation between the email channels configuration records and email transmit
processing, aswell as the email queueing logic is described below:

* The email_meta process dequeues a record from the email meta queue, and construfts a
list of domains to which the message must be sent using these steps:

* Retrieves the route using the route id from the email queue record.

SDD FOR ECPN VERSION 2.2 » UNE 1999 53

SOFTWARE DESIGN DESCRIPTION FOR ECPN

» Retrieves the channel record associated with the route using the channel name stored
in the route.

» Constructs the domain list from the channel record’s “send to” field.
» Adds the route domain to the domain list if it is not already listed.
* The email_meta process enqueues the record to each of the targeted domain queues.

* The email_send process loops, searching the email stats database for a domain that is not
locked and has not been attempted in the last “DOWN_HOST_RETRY” seconds.

* The email_send process calls ReadOutChnlQueue() to dequeue a record from the domain
gueue and build a file for transmit. (Note that email channels send in multiple mode only,
so batch mode is not permitted.) ReadOutChnlQueue() then performs the following
processing:

* For an X12 channel, the routes are used to identify the GSs and STs in the X12
message that are intended for transmit on the target domain. These GSs and STs are
placed into ISA/IEA wrapped messages as follows:

» The ISA/IEA wrappers from the original received X12 are used.

» Field delimiters, separators, and/or sub-element separators are replaced as defined
in the segment terminator replacement for the channel.

» The ISA05/06 and ISAQ7/08 fields are replaced with the values specified in the
channel configuration record.

 If specified in the channel configuration record, the file content is blocked into
fixed length records (new line separated).

» For a UDF channel, the file is returned as identified in the channel queue record.
* The route is passed back from ReadOutChnlQueue(). The email_send process uses the
channel name in the route to access the channel configuration and determine whether to

MIME encode the message.

» The email_send process(es) query the host denoted by the domain name to get a list of
SMTP servers for the domain.

» The email_send process makes an SMTP connection with an SMTP server from the list,
negotiates the from/to addresses, and then sends all of the data in the domain queue.

54 SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

e The email_send process calls UpdateOutChnlQueue() to update the route’s status within
the sent message object and to delete the associated record from the domain queue. Note
that for data send errors, the records are left on the queue for subsequent attempts. For
addressee or SMTP server negotiation errors, the message object is marked with an error,
sent to the error queue, and dequeued from the domain queue.

Table 5-8 Email Channel Fields (EmailSruct) |
Field Name Type Description
mime_capable int Flag that denotes whether a channel sends
messages as MIME attachments
send_to_addr char List of addresses to which messages routed to the
[MAX_ADDR__ | channel should be sent. Note that this could be a
LEN] list that contains multiple domains.
recv_from_domain | char List of addresses or partial addresses used by the
[MAX_ADDR__ | emaild process (described$®ction 5.2.5to
LEN] attribute received email to a specific channel

5.2.6 Electronic Mail Daemon (emaild)

The emaild SCSC is responsible for processing messages received via SMTP email. The
emaild process checks for incoming messages in the ecedi mailbox. Received messages are
recorded in the channel logs, stripped of addressing header information, and passed to either
the incoming X12 queue or incoming translation queue for processing. If emaild receives a
message with a MIME attachment, it decodes each attachment and treats it as a separate
message. Emaild can decode MIME attachments that use one of the following content transfer

encodings:

e 7hit

e 8hit

e binary

e quoted-printable
* base-64

The emaild process searches the “From” address lists in each of the channel configuration
records (described ihable 5-§ to attribute a received email message to an established

channel. When a message is received and no active channel is found with a partial or full
matching from address, the message is placed into the RejectedEmail box. It can be viewed and
reinjected using the RejectedEmail application (describ&kation 5.4.1p

SDD FOR ECPN VERSION 2.2 » UNE 1999 55

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.2.7 Channd Status

The Channel Status application (ChanStats) provides a static view of the communication
channels configured in the channel database (described in Section 5.2.10). The last time of

receipt, last time of transmit, current outgoing message backlog, and current channel status are
provided for each channel in sortable columns.

Table 5-9 Channel Status Database (CHAN_STAT_REC)

Field Name Type Description
status enum Status of the channel (e.g., DOWN, IDLE, BUSY)
IfaceStatType

tor long Last time of receipt

tot long Last time of transmit

backlog int Number of messages in an outgoing channel's quede

db_rec int Database record number. This applies to both the
channels database and the chanstat database, sinc
two databases must always match.

b these

5.2.8 Incoming X12 Queue

56

The incoming X 12 queue contains arecord for each file to be processed by the Router
(described in Section 5.3). Once the incoming file is processed by the Router, the record is
removed from the queue. This queue is populated by the incoming communication channels
that are designated as X 12 channels. In addition, this queue is populated by theincoming UDF
to X12 Trand ator and the error queue, message log, and channel log applications. The queue
has no fixed capacity and is limited only by available disk space.

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

The Incoming X12 Queue Viewer (described in Section 5.4.4) provides a text-based interface
for displaying the current content of the queue. The content of the incoming X12 queueis

described in Table 5-10.

Table 5-10 Incoming X12 Queue Fields (IN_X12 FILE_REC)

Field Name Type Description
IN_COMMS_REC Variant of the Normal X12 received file processing
union record. Contains the following pieces
(indicated by indention):
x12 filename SHORT_FILE | Local file containing the received X12
NAME
pull_filename SHORT_FILE | Nameof thefile on theremote system when
NAME it was pulled
in_chan_name CHAN_NAME | Name of the incoming channel
TOR u_long Time the message was received
IN_UDF2X12 REC Variant of the Filesreceived on aUDF channel. Contains
union the following pieces (indicated by

indention):

genx12_and 824

UDF2X12 _REC

Structure for the UDF to X12 Trandlator.
(See Table 5-11.)

pull_filename SHORT_FILE_ | Nameof thefile on theremote system when
NAME it was pulled
in_chan_name CHAN_NAME | Name of the incoming channel
TOR u_long Time of receipt
UDF2X12 REXLATE_ Variant of the Files that need to go back through the
REC union Translator. Placed inthe IN_X12 FILE_Q
by the RPCServer in responseto a
REXLATE action taken by the user in the
error log or message log. Contains the
following pieces (indicated by indention):
msn MSN_NAME MSN being reprocessed

genx12_and 824

UDF2X12 REC

Structure from the UDF to X12 Trandlator

X122UDF_REC Variantof the | PlacedintheIN_X12_FILE_Q by the X12
union to UDF Translator. It represents the
generated data for a message being routed
out a UDF channel. Contains the following
pieces (indicated by indention):
msn MSN_NAME MSN being translated
identifier int Identifier for the routes in parent_msn

SDD FOR ECPN VERSION 2.2 » UNE 1999

57

SOFTWARE DESIGN DESCRIPTION FOR ECPN

58

Table 5-10 Incoming X12 Queue Fields (IN_X12_FILE_REC) (Continued)

Field Name Type Description
ack_filename SHORT_FILE | File generated by the X12 to UDF
NAME Trandlator
xltr_error_type short Error code from outgoing translation.
TPDB_ERR - Problem finding the TPDB
information
X12_ERR - Invalid or corrupt X12
out_chan_name CHAN_NAME | Outgoing channel name passed in by the
Translator
REROUTE_REC Variant of the Placed inthe IN_X12_FILE_Q by the
union RPCServer in responseto aREROUTE
action taken by the user in the error log or
message |og. Contains the following pieces
(indicated by indention):
msn MSN_NAME MSN being reprocessed

TRANSMIT_REC

Variant of the
union

Not currently implemented

RETRANSMIT_REC Variant of the Placed inthe IN_X12_FILE_Q by the
union RPCServerinresponsetoaRETRANSMIT

action taken by the user in the outgoing
channel log application. Contains the
following pieces (indicated by indention):

out_chan_name CHAN_NAME | Name of the channel on which to retransmit

mod_name MOD_NAME | Name of the ECPN administrator selecting
RETRANSMIT from the channel log
application. Thisis used to add an audit
event to the message object.

mod_host MOD_HOST Host from which RETRANSMIT was
selected on the channel log application.
Thisisused to add an audit event to the
message object.

index int Index to the channel log

date str DATE _STR Date of the channel log

MSG_REPORT_REC Variant of the Placed on the IN_X12 FILE_Q by the
union Message Reporter in response to a crontab

invocation to generate message reports

contents u_int Contentsindicator

chan_name CHAN_NAME [Channel for the report

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-10 Incoming X12 Queue Fields (IN_X12_FILE_REC) (Continued)

Field Name

Type

Description

log_date

DATE_STR

Log date for the report

IN_SPS EDA_REC

Variant of the
union

Placed inthe IN_X12 FILE Q by comms
channels of message type SPS-EDA

ps SHORT_FILE_ | Name of the incoming postscript file
NAME
ps_incoming_name SHORT_FILE_ [Name of the postscript file as sent by the
NAME remote system
ps TOR u_long Time of receipt for the postscript file
idx SHORT_FILE_ | Name of the incoming index file
NAME
idx-incoming_name SHORT_FILE | Nameof theindex file as sent by the remote
NAME system
idx_TOR u_long Time or receipt for the index file
chan_name CHAN_NAME | Name of the channel by which the file was
received
Table 5-11 UDF to X12 Translator Structure (UDF2X12_REC)
Field Name Type Description
sectinfo_filename SHORT_FILE_ | File containing section info
NAME
udf_filename SHORT_FILE_ | File containing the UDF
NAME
x12_filename SHORT_FILE_ | Local file containing an X12 generated by
NAME the UDF to X12 Trandlator
gen824 filename SHORT _FILE | Filegenerated by the Translator containing
NAME an X 12 824 to be sent back to the sender
xltr_error_type short Status of the trandlation:
TPDB_ERR - Problem finding the TPDB
information
UDF_ERR - Invalid or corrupt UDF
errfile SHORT_FILE_ | File generated by the incoming Translator
NAME which gives debug information concerning
the trangdlation
TOX u_long Time that the UDF to X12 Trandlator

translated the file

SDD FOR ECPN VERSION 2.2 » UNE 1999

59

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.2.9 Outgoing Communication Queues

An outgoing communication queue exists for each channel configured in the channel database
(described in Section 5.2.10), except for email channels. For email channels, thereis onelarge
meta queue and various domain queues (as described in Section 5.2.5). The contents of an
outgoing communication queueisdescribed in Table 5-12. Currently, only asingle precedence
isused for all message traffic.

Entries to the outgoing communication queues are appended by the following means:

» The Router (described Bection 5.3.Lappends a message to the outgoing
communication queues after it has parsed and decoded the message and determined
which (if any) channels to route the message to. Because all message appended by the
Router are in X12 format, the UDF Filename field is left empty.

* The Translator (described 8ection 5.5.%appends messages to the outgoing
communication queues after it has successfully converted a message from an X12to a
UDF. The UDF Filename field is populated with the newly created UDF file.

Entries are removed from the outgoing communications queue only after they have been
successfully transmitted. Messages that fail transmission will be left in the queue for
subsequent channel cycles. Note that for single ST-based channels (1 ISA/GS/ST), an entry
will remain in the outgoing communications queue until all of the STs created by the outgoing
comms channel have been transmitted. The EC message object will contain a record of
untransmitted STs to ensure that duplicate STs are not transmitted out a channel.

These queues have no fixed capacity and are limited only by available disk space.

Table 5-12 Outgoing Communication Queue Fields (OUT_CHAN_REC)

Field Name Type Description
msn_name MSN_NAME (format: NNNNNNNN/YYYYMDD)
out_udf filename SHORT_FILE_NAME (For UDF channels only) UDF file to
transmit
identifier int Route identifier designated for the
destination channel

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.2.10 Channel Database

The channel database stores information specific to each communication channel entry. Itis
populated by user entry through the EditChannels application (described in Section 5.2.1) and
is used to control core processing such as routing, translation, incoming communications, and
outgoing communications. For a compl ete description of the channel database record, see
Table 5-13. Each database record also contains interface-specific information. For alisting of
these protocol-specific fields, see Table 5-4 (Kermit), Table 5-5 (CLEO), Table 5-6 (FTP), and
Table 5-8 (email).

Table 5-13 Channel Database Fields

Field Name Type Description

chname char [CHNAME_LEN] Channel name

machine char [MAXHOSTNAMELEN] [Local host for channel

intrfc char [INTERFACE_LEN] Possible values: FTP, Email,
Kermit, ZMODEM, CLEO

message type char MESSAGE_TYPE_LEN] [Possiblevalues: X12ISA,
SAACONS UDF, SPSUDF

node_type enum NodeType Possible values: GATEWAY,
VAN, NEP, AIS

data type enum Data Type Possible values: Binary, ASCI|

state enum Channel State Set to ON or OFF by user action
through the EditChannels
application

chkGS02.enabled int Indicator for whether to validatethe
GS02 field route

editor char [EDITOR_LEN] Name of executableinvoked to edit

the channel. Possible values:
CleoConfig, FileConfig,
EditKermit, Email Edit.

recv int Channel capable of receiving
Xmit int Channel capable of transmitting
transfer_style enum XferStyle Possible values: Batch, Multiple
hdr_trailor int Indicates whether to add headers
and trailers
singleST int On or off for single ST transfer
isa_sender_id_qualifier |char [ID_QUALIFIER_LEN] I SA05 replacement value
isa_sender_id char [ISA_ID_LEN] ISA06 replacement value

isa_recv_id_qudifier char [ID_QUALIFIER_LEN] ISAQ7 replacement value

SDD FOR ECPN VERSION 2.2 » UNE 1999 61

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-13 Channel Database Fields (Continued)

Field Name Type Description
isa recv_id char [ISA_ID_LEN] | SA08 replacement value
conv struct SegTermConv
do_conv int Whether outgoing conversion is
enabled
segterm unsigned int [2] Two-byte segment terminator
elemsep unsigned int Element separator
subelemsep unsigned int Subelement separator
collision detection unsigned int Whether to put a message in the

error queueif acollision is detected

admin struct Admininfo
adminpath char [ADMIN_MAX_PATH_ | Email address or path to push
LEN] admin filesto
adminfname char [ADMIN_MAX_PATH_ | File nameto transmit as
LEN]

record len int Maximum length of afilesent tothe
remote system

xref char [XREF_LEN] Channel cross-reference string

remote_os int Operating system (OS) that remote
system is running

remote os str char [REMOS_STR_MAX] OS as entered by the ECPN
administrator

Interface specific union For alisting of these protocol-

information specific fields, see Table 5-4
(Kermit), Table 5-5 (CLEO),
Table 5-6 (FTP), and Table 5-8
(email).

begin_win int Beginning of connection window
(in seconds past 00:00)

end_win int End of connection window (in
seconds past 00:00)

days int[7] Array of days on which to connect

(0=SUN, 1=MON, .. . 6=SAT)

62

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-13 Channel Database Fields (Continued)

Field Name Type Description
cycle int Cycle length (in seconds)
retry_interval int Indicates how oftentoretry afailed
connection
num_retries int Indicateshow many timestoretry a
failed connection before quitting

SDD FOR ECPN VERSION 2.2 » UNE 1999

SOFTWARE DESIGN DESCRIPTION

5.3 X12 Message Processing

The X12 Message Processing CSC appliesto those SCSCsresponsible for parsing and routing
X12 messages. This CSC consists of the following SCSCs:

* Regular Received X12 Handling
* Translated UDF to X12 Handling
» UDF to X12 Retranslate

« System Generated File Handling
* Reroute Handling

* Retransmit Handling

* Message Report Handling

* SPS-EDA Handling

» Parsing

* Route Lookup

* Queueing

The router process searches the incoming X12 queue for the next available

IN_X12 FILE_REC record. This record can represent one of several functions, as defined by
the variant record shown ifable 5-10 The format of the IN_X12 FILE_REC is also

described inrable 5-10

The following sections detail the handling of each variant of the IN_X12_FILE_REC.

5.3.1 Regular Received X12 Handling

This SCSC handles X12 messages received on an X12 channel. The file is partitioned into
messages, and each message is parsed, routed, and queued in accordance with the methods
described irBection 5.3.95.3.1Q and5.3.11

5.3.2 Trandlated UDF to X12 Handling

This SCSC handles records generated from the UDF to X12 Translator (described in
Section 5.5.1 The message is parsed, routed, and queued in accordance with the methods
described irBection 5.3.95.3.1Q and5.3.11

5.3.3 UDF to X12 Retrand ate

This SCSC handles records placed inthe IN_X12 FILE_Q by the RPCServer in response to a
RETRANSLATE action taken by the user in the error log or message log. The original UDF
content is extracted from the message object, and a record is queued to the UDF to X12
Translator (described iBection 5.5.1 This action results in the creation of a new message
object for the retranslated message.

64 SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION

5.3.4 System Generated File Handling

This SCSC handles the system-generated X 12 messages that result from translation (described
in Section 5.5.1 and 5.5.4). Incoming translation may generate an 824 acknowledgment for
translated messages. If so, the 824 997 filename field of the current IN_X12 FILE REC
record is populated with the filename containing the 824.

Using the IN_X12_FILE_REC's incoming channel field, the router looks up the channel
configuration to check the acknowledgment configuration. If the channel is configured to slend
all acknowledgments, the 824 text is parsed through the Parse SCSC (described in
Section 5.3.% If the channel is configured to send acknowledgments only on faidréhe
IN_X12 FILE_REC's xltr_error_type field is set for error, the router will pass the 824 text Jo

the Parse SCSC. Outgoing translation generates a 997 X12 message. For a description ¢f 997
routing, see the Routing SCSC (describe8eation 5.3.1))

5.3.5 Reroute Handling

This SCSC handles records placed in the IN_X12_FILE_Q by the RPCServer in response to a
REROUTE action taken by the user in the error log or message log application (described in
Section 5.4.%nd5.4.9. Routes are not redundantly assigned. As a result, a reroute action only
assigns and queues routes that are new since the last route attempt. The reroute action uses the
MSN to access the message object to determine the routes that are and are not satisfied in
accordance with the route database.

5.3.6 Retransmit Handling

This SCSC handles records placed in the IN_X12_ FILE_Q by the RPCServer in response to a
RETRANSMIT action taken by the user in the outgoing channel log application (described in
Section 5.4.8 RETRANSMIT of a file from the channel log application results in the same
content (MSN/GS/ST message portions) of the original file being flagged for routing out the
same channel. The normal communication logic for queue/route management handles these

added routes, so changes in channel configuration affect the repackaging of the messages into
files.

5.3.7 Message Report Handling

This SCSC handles records (MsgReports) placed inthe IN_X12_ FILE_Q by the MsgRepolter.

The MsgReporter, run as a regularly scheduled cron job, is responsible for generating megsage
traffic reports for individual communication channels. Message reports are logged like an
other message, and routing is determined based on the communication channel’s admin fab
configuration. The message route database is bypassed completely.

SDD FOR ECPN VERSION 2.2 » UNE 1999 65

SOFTWARE DESIGN DESCRIPTION

5.3.8 SPS-EDA Handling

This SCSC handles records placed in the IN_X12 FILE Q by the incoming communication

channels of message type SPS-EDA. Files are expected to come in pairs, including an index

file and a postscript file. The two files are treated as a sectioned message, with the postscript

filebeing set as a section keeper. Only the postscript file is routed according to Section 5.3.10.

Upon transmission, the other section—the index file—is gathered and sent with the postscript
file.

5.3.9 Parsing

| A file is parsed into one or more message objects by the parsing SCSC. Parsing identifies and
validates relevant information in an X12 message and stores this information in message
objects on a per ISA basis.

Precedence is assigned based on the message type and stored with the message object. 824s and
997s receive ACK precedence, while everything else gets ROUTINE precedence.

| 5.3.9.1Element Validation

Some X12 segments are validated by checking to insure the elements in the segment comply
with the X12 3040 standard. The Router validates elements by performing the following checks
on each element:

» Length (minimum and maximum)

» Embedded blanks allowed

* Mandatory or optional

* Field type - valid types in accordance with X12 are:

« ID

e String

e Date

e Time

* Numeric

e Decimal Number

5.3.9.2 Element Storage
The following elements are parsed and stored in a message object on a per ISA basis.

* BEG
* 01 Purpose
* 02 Type Code
* 03 Purchase Order Number

66 SDD FOR ECPN VERSION 2.2 « JUNE 1999

SOFTWARE DESIGN DESCRIPTION

« BIG
* 01 Invoice Date
e 02 Invoice Number
e 04 Purchase Order Number |

- BQT
e 01 Purpose
02 Ref Num
« 03 RFQ Date
e 04 Date/Time Qual
¢ 05 Date ‘

* BOQOR
e 01 Purpose
e 02 Ref Num
« 03 RFQ Date
e 04 Date/Time Qual
e 05 Date |

« BCO
¢ 01 Purpose
e 02 Ref Num
e 03 RFQ Date ‘

« GS - AllFields (GS01 - GS09)

+ GE - All Fields (GS01 - GS08)

« IEA - All Fields (IEAO1 -IEA02)

« ISA - All Fields (ISAO1 - ISA18) |
. SE - All Fields (SEO1 - SE02)

ST - All Fields (STO1 - ST02)

5.3.9.3 Logging and Message Object Storage

Parsing errors for each message object are identified and stored in the message object. Each of
the messages is also logged in the message log. If parsing errors exist, the message is also
appended to the error queue; otherwise, the message has passed parsing.

If the parent_msn field of the IN_X12_ FILE_REC is populated, then the parent_msn is placed
in the newly created message object(s) as a linkage. The MSN(s) for the newly created message
object(s) is also stored in the parent message object.

5.3.10 Route L ookup

Routes for all messages except 824s, 997s, and retransmitted records are determined based on
the message route database. This database establishes a link between two circuits, routing
messages from one to the other based on the following criteria: |

SDD FOR ECPN VERSION 2.2 » UNE 1999 67

SOFTWARE DESIGN DESCRIPTION

| * ISA/GS To - To specify that the system route only messagpressed to a certain site
(using the value that appears in the ISA08 or GS03 field of the message). Note that this
function can result in portions (GSs) of a message assigned to a route without the whole
message being assigned to a route.

| * VAN/Filename Pattern - To specify that the system route only messages whose original
file name matches the specified file pattern. A file pattern may contain wild cards, such as
“** for matching purposes.

» GSO01 - To specify that the system route to a channel only those incoming messages of a
certain X12 transaction type.

» All-Channel - To specify that the system route all of the messages from the source channel
to the specified destination channel.

A list of channels is provided for source and destination channel selection. Duplicate route
entries, as well as individual entries where the source and destination are the same, are not
allowed.

5.3.10.1 824 Routing

A system-generated 824 is a by-product of translating a UDF to an X12. The original source
channel of the UDF contains the channel or email addresses to which the 824 should be routed.
This route is assigned explicitly, bypassing the message route database.

| 5.3.10.2 997 Routing

997s are received as independent IN_X12 FILE REC records. The in_chan_name field
specifies where the 997 is to be sent. This route is assigned explicitly, bypassing the message
route database.

5.3.10.3 Message Route Database

An entry in the message route database is defined by the source channel of the incoming

message, a routing field, and the destination channel of the outgoing message. The routing can
| include criteria such as the receiver (TO) or the filename. The wildcardAdrdirglso exists

for the source channel and routing fieldsALfL is selected for these fields, all messages pass

the message routing criteria for that entry.

68 SDD FOR ECPN VERSION 2.2 « JUNE 1999

SOFTWARE DESIGN DESCRIPTION

Individual entriesin the message route database can be activated or deactivated to control their
current status during runtime checking.

Table 5-14 Message Route Database Fields (ROUTE_REC)

Field Name Type Description
active char Indicatesif the entry is active or not (1=ON;
0=0FF)
type char Indicatesthetype of routing being used (e.g., file
name, ISA/GSTO)
cc char Indicates whether the route is a primary route or
acc route (1=cc route; O=primary route)
to char ISA or GSreceiver (to) ID
[DB_ISAGS TO
LEN]
src_channel char Source channel, FROM field, TO field, or
[DB_CHNAME_ | filename prefix by which to route. Also contains
LEN] entry telling by which criterion to route.
id char Up to three-letter prefix of the received file
[DB_FILE_PATT
ERN_LEN]
dest_channel char Contains the destination channel for the route.
[DB_CHNAME_ | Also contains a destination email address when
LEN] the outgoing channel is an email interface.
gs01 GS01_ENTRY GS01 value on which to route
[MAX_GS01]
5.3.11 Queueing

If the message is being routed to a UDF channel, an OUT_X12 FILE REC isplacedinthe
outgoing translation queue. If amessage is being routed to any email channel, an

OUT_X12 _FILE_REC isplaced in the single email meta queue. For al other X12 channel
destinations, an OUT_X12 FILE_REC is placed in the queue for that channel.

SDD FOR ECPN VERSION 2.2 » UNE 1999

69

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.4 Audit

The Audit CSC is responsible for creating and managing an audit trail for all messages
processed by ECPN. The SCSCs of the Audit CSC are:

» Message Log Database

e Error Queue
e Channel Log

* Incoming X12 Queue Viewer
 Message Log Viewer

e Error Queue Viewer

» Journal Data Summary (JDS) Viewer
* Raw Message Viewer

* Channel Log

Viewer

e Email Domain Queue Viewer
e Channel Queue Viewer

* Rejected Email Box Viewer
 RDBMS Injector

« RDBMS Retrieval

« RDBMS Message Database
« RDBMS Table Database

5.4.1 Message Log Database

The message log database is a collection of RPC-based daily message logs. Each log maintains
a summary record for each message object contained within it. Each day, a new message log is
created. This log has no fixed capacity and is limited only by available disk space and unique
message sequence numbers (range 1 - 99,999,999). Each message object is maintained in a

compressed data file stored in Daily/<yyyymmdd>/Archives/msg_objs.

The Message Log Viewer provides GUI interface access to the set of message logs and the
content of each log. For a complete description of this GUISse&on 5.4.5

Table 5-15 Daily Message Log Database Fields (MSG_LOG_REC)

Field Name

Type

Description

msn_name

MSN_NAME

Message Sequence Number (format:
SNNNNNNNN/YYYYMMDD). The numeric
portion starts at 00000001 for the first incomin
message of a day and is incremented sequent
so that it represents the true order of decoded
incoming messages to the system.

Y
ally,

in_chan_name

CHAN_NAME

Name of the originating communications chahnel

in_filename

MLR_FILE_NAME

Incoming file name (UDF or X12 file)

70

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-15 Daily Message Log Database Fields (MSG_LOG_REC) (Continued)

Field Name Type Description

TOR long Time that the incoming file was received on the
communications channel

TOP long Time that the Router process completed proce$sing
the incoming file and created the message object

recv_id ID_NAME Receiver Interchange Name (X12 ISA08 field)

send_id ID_NAME Sender Interchange Name (X12 ISAO6 field)

ic_number int ISA Interchange Control Number (X12 ISA13
field)

msg_size int Number of bytes in the message

error_mask int Identifies the type of error for messages in the prrdr
queue

5.4.2 Error Queue

The error queue contains summary information for each message that fails translation,

decoding, routing, or conversion. It isasingle queue that spans all operational days. The error |
gueue is populated by the Router (as described in Section 5.3.1), the UDF to X 12 Translator
(asdescribed in Section 5.5.1), the X 12 to UDF Translator (as described in Section 5.5.4), and

by outgoing communications processes (as described in Section 5.2) as follows:

Incoming UDF messages that fail UDF to X12 translation because of semantic or
syntax errors are flagged as an error by the UDF to X12 Translator and placed in the
error queue by the Router process.

Incoming UDF messages that fail UDF to X12 translation because of internal database
lookup errors are flagged as an error by the UDF to X12 Translator and placed in the
error queue by the Router process.

Incoming X12 or post UDF to X12 translation messages that fail X12 decode because
of semantic or syntax errors are placed in the error queue by the Router process.

Incoming X12 or post UDF to X12 translation messages that do not have an outgoing
route available in the route database (for any piece of the message) are placed in the
error queue by the Router process.

Outgoing UDF messages that fail X12 to UDF translation because of semantic or
syntax errors are placed in the error queue by the X12 to UDF Translator process.

Outgoing UDF messages that fail X12 to UDF translation because of internal database
lookup errors are placed in the error queue by the X12 to UDF Translator process.

SDD FOR ECPN VERSION 2.2 » UNE 1999 71

SOFTWARE DESIGN DESCRIPTION FOR ECPN

» Outgoing X12 messages that fail segment terminator conversion because of conflicts
between the channel configuration record and the message content (target delimiter
pre-exists in the outgoing message) are placed in the error queue by the outgoing
communications process.

This error queue has no fixed capacity and is limited only by available disk space. The Error
Queue Viewer (described ection 5.4.pprovides a GUI for viewing and processing the

gueue entries.

Table 5-16 Error Queue Fields (MSG_LOG_REC)

the

1%

Field Name Type Description

msn_name MSN_NAME Message Sequence Number (format:
SNNNNNNNN/YYYYMMDD)

in_chan_name CHAN_NAME Name of the originating communications
channel

in_filename MLR_FILE_NAME | Incoming filename (UDF or X12 file)

TOR long Time that the incoming file was received on
communications channel

TOP long Time that the Router process completed
processing the incoming file, and created thi
message object

recv_id ID_NAME Receiver Interchange Name (X12 ISAOQS fie

send_id ID_NAME Sender Interchange Name (X12 ISA06 field)

ic_number int ISA Interchange Control Number (X12 ISA13
field)

msg_size int Number of bytes in the message

error_mask int Identifies the type of error for messages in
error queue

the

5.4.3 Channel Log

72

A channel log contains a record for each receipt or transmission on a channel. (Separate
incoming and outgoing channel logs exist for each channel.) The actual text received or
transmitted is maintained in a compressed text data file that is stored in Daily/<yyyymmdd>/
ChannelLogs/<channel>/indata and Daily/<yyyymmdd>/ChannelLogs/<channel>/outdata.

A channel log has no fixed capacity and is limited only by available disk space. Channels logs
are rolled over on a daily basis, so that a given log contains only the current day’s incoming or
outgoing messages. For details about the Channel Log VieweSgsten 5.4.9

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.4.4 Incoming X12 Queue Viewer

The Incoming X12 Queue Viewer displays the records contained in the incoming X12 queue
(described in Section 5.2.8). For the location of the data stored, see Section 5.4.3.

5.4.5 Message Log Viewer

The Message Log Viewer isimplemented through the MsglLog application and itsinterface
with the RPC message log databases. This GUI application provides the ECPN administrator
with atabular form of summary information for each message that is processed by the Router
module (described in Section 5.3.1).

The Message Log Viewer interfaces with the RPCServer (described in Section 5.1.1) to obtain
all message log information. The Message Log Viewer is able to connect to any reachable
ECPN RPCServer across a TCP/IP network and obtain message log information stored on that
host. For the location of the data stored, see Section 5.4.1.

The ECPN administrator can reroute or retranslate messages through the MsglL og application
in accordance with the rerouting and retranslating functionality provided by the Error Queue
Viewer application (described in Section 5.4.6). Rerouting or retranslating that message from
the Message Log Viewer removes the message record from the error queue.

The tabular information provided by this application is a formatted version of the contents of
the RPC-based message log. For alisting of these fields, see Table 5-15. The ECPN
administrator can sort the records on any column in the table of records. The JDS Viewer (see
Section 5.4.7) and the Raw Message Viewer (see Section 5.4.8) can be invoked for viewing
individual message log entries. Message L og entries may also be annotated from the Message
Log Viewer.

5.4.6 Error Queue Viewer

The Error Queue Viewer isimplemented through the M sgL og application and itsinterface with
the RPC-based error queue. This application interfaces with the RPCServer (described in
Section 5.1.1) to obtain al error queueinformation. The Error Queue Viewer isableto connect
to any reachable ECPN RPCServer across a TCP/IP network and obtain error queue
information stored on that host.

The ECPN administrator hasthe ability to clear recordsfrom the error queue by deleting them.
Note that deleting arecord from the error queue does not remove the message from the system.
The messageistill inthe message | og database (described in Section 5.4.1) and can be viewed
viathe Message Log Viewer.

SDD FOR ECPN VERSION 2.2 » UNE 1999 73

SOFTWARE DESIGN DESCRIPTION FOR ECPN

74

Because an ECPN administrator cannot modify messages, the following types of failed
messages cannot be resolved by a reroute or retranglation. The only way to remove these
messages from the error queue is to del ete them.

Incoming UDF messages that failed UDF to X12 translation because of semantic or
syntax errors can be sent back to the UDF to X12 Translator with a retranslate
operation. The message will fail again and be placed back in the error queue by the
Router process.

Incoming X12 or post UDF to X12 translation messages that failed X12 decode
because of semantic or syntax errors are sent back to the Router process with a reroute
operation. The message will fail again and be placed back in the error queue by the
Router process.

Outgoing UDF messages that failed X12 to UDF translation because of semantic or
syntax errors are sent back to the Router process with a reroute operation. The message
will fail again and be placed back in the error queue by the X12 to UDF translation
process.

NOTE: Reroute and retranslate actions actually remove the message from the
gueue; but, because the message fails again, it is immediately placed back in the
queue.

The ECPN administrator can clear the following message types from the error queue by
rerouting or retranslating them:

Incoming UDF messages that failed UDF to X12 translation because of internal
database lookup errors are sent back to the UDF to X12 Translator with a retranslate
operation. If the ECPN administrator has updated the database to resolve the initial
lookup failure, the message will continue through processing. Otherwise, the message
will fail again and be placed back in the error queue by the Router process.

Incoming X12 or post UDF to X12 translation messages that did not have an outgoing
route available in the route database (for any piece of the message) are sent back to the
Router process with a reroute operation. If the ECPN administrator has updated the
database with a route for the message, the message will continue through processing.
Otherwise, the message will fail again and be placed back in the error queue by the
Router process.

Outgoing UDF messages that failed X12 to UDF translation because of internal
database lookup errors are sent back to the router and then to the X12 to UDF
Translator process with a reroute operation. If the ECPN administrator has updated the
database to resolve the initial lookup failure, the message will continue through
processing. Otherwise, the message will fail again and be placed back in the error
gueue by the X12 to UDF Translator process.

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

« Outgoing X12 messages that failed segment terminator conversion, due to terminators
and separators in the message body, are sent back to the Router process with a reroute
operation. If the ECPN administrator has updated the channel record to resolve the
initial conflict, the message will continue through processing. Otherwise, the message
will fail again and be placed back in the error queue by the outgoing communications
process.

The tabular information provided by the Error Queue Viewer is a formatted version of the|
content of the RPC-based error queue. For a listing of these fieldsaldees-16 The ECPN
administrator has the ability to sort the records on any column in the table of records. The JDS
Viewer (seeSection 5.4.Yand the Raw Message Viewer (Sstion 5.4.8can be invoked for
individual error queue entries. Error Queue entries may also be annotated from the Error Qreue
Viewer.

5.4.7 Journal Data Summary (JDS) Viewer

The JDS Viewer provides a common GUI for displaying the message content, identified
message errors, and all associated data and actions for the message object. It is invoked from
the Message Log Viewer (describedSection 5.4. the Error Queue Viewer (described in
Section 5.4.5 the ObjectMMI (described iSection 5.4.1% the Email Domain Viewer

(described irsection 5.4.1)) and the outgoing channel logs. For the location of the data storeld,
seeSection 5.4.1

The message content is formatted in a pane with standardized graphic symbols in place of
delimiters and with placeholder text for any binary data fields (X12 BINOZ2 fields). Identified
errors are described in a separate error text pane. Previous and Next buttons are available for
navigating through the highlighted errors in the message body. Associated data and actions are
represented in yet another pane. The content of this pane is descritadodiein-17 |

Table 5-17 JDS Viewer Message Journal Pane

Field Name Description

General Info Contains content descriptions that are applicable to the whole
message, including: ISA Sender, ISA Receiver, IC Number, number
of message segments, message size in bytes, received delimitgrs

Errors Contains a list of message processing errors along with the mgssage
segment and offset values in which the errors were identified. Hor a
complete list of possible error type/strings, $able 5-2

Annotations Contains a list of annotations entered by the ECPN administrafor
including the time, administrator name, administrator host, and
annotation text

SDD FOR ECPN VERSION 2.2 » UNE 1999 75

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-17 JDS Viewer Message Journal Pane (Continued)

Field Name Description

Linkages Contains a list of message object linkage information such as parent
MSN (for system-generated message objects)

GSlInfo Contains alist of GS information including the GS From and To
addresses and the GS Control Number.

Action Summary Containsalist of actions taken with the message, along with thetime,
channel (where applicable), ECPN administrator/host name (where
applicable).

The JDS Viewer isnot a separate application but isa common library routine availablein a C/
Motif version. The applications invoking this routine retrieve all message object data through
the RPCServer (described in Section 5.1.1) and have the ability to connect to any reachable

ECPN RPCServer across a TCP/IP network and obtain message object data stored on that host.

The ECPN administrator has the ability to append annotations to a message object through the
JDS Viewer. These annotations include the ECPN administrator name, client host name, time
stamp, and text. These append-only annotations are processed through the RPCServer.

5.4.8 Raw Message Viewer

76

The Raw Message Viewer provides acommon GUI for displaying the raw message content
(i.e., the content of a message as received). It isinvoked from the Message Log Viewer
(described in Section 5.4.5), the Error Queue Viewer (described in Section 5.4.6), the channel
logs, and the ObjectMMI (described in Section 5.4.14).

For a message received on an X 12 channel, the content is extracted from the segments of a
message object. For a message received on a UDF channel, the content is extracted from the
saved UDF buffer in the message object. In either case, the content isdisplayed in asingle pane
with each unprintable character replaced with the octal representation of the byte value.

The Raw Message Viewer is not a separate application but is a common library routine
available in a C/Moatif version. The applications invoking this routine retrieve all message
object data through the RPCServer (described in Section 5.1.1), and have the ability to connect
to any reachable ECPN RPCServer across an | P network and obtain message object data stored
on that host. For the location of the data stored, see Section 5.4.1.

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.4.9 Channel Log Viewer

The Channel Log Viewer displays the files sent or received on each channel. The following
fields are displayed by the Channel Log Viewer:

* Filename
e Byte size
* Time of receipt/transmission

Each field is sortable by clicking the column heading. For the outgoing channel log, the
information above is displayed in a file folder format. Opening a folder reveals the list of MSNs
and ICNs transmitted in that file. Selection of an MSN invokes the JDS Viewer. Viewing tie
file content at this level will display a two-pane window, with the top pane listing each MS
transmitted in the file. Within each MSN, the actual GS and ST segments sent from the original
ISA envelope are listed. For both incoming and outgoing channel logs, the bottom pane of the
window shows the text as it was actually received or sent, to include email headers, MIME
encoding, conversions for ISA05/06 overwrite, segment terminator replacement, and single
ISA/GS/ST. If it is a UDF channel, the UDF text is shown in the bottom pane. For the location
of the data stored, s&ection 5.4.3Both incoming and outgoing logs allow the user to save
file's text to a file on disk, as well as search the file text for a specified string.

The ECPN administrator can select file retransmit to requeue the same GS segments frof the
original file (described ifsection 5.3.5 The content will be placed in the outgoing channel

gueue for transmission. The retransmit operation can be used to resend messages after changes
have been made to the channel’s configuration.

Table 5-18 Channel Log Fields (CHNL_LOG_REC) |
Field Name Type Description

filename SHORT_FILE_NAME | Filename on remote site (Message ID for gmail
channels)

ftime long Time message was received/transmitted fjlom/
to channel

filesize unsigned long Size of the file in bytes

data_offset unsigned long Offset to data for the message in comprgssed
file

msn_length unsigned long Number of bytes of MSN/GS-related datp in
compressed data file

text_length unsigned long Number of bytes containing message in
compressed text data file

SDD FOR ECPN VERSION 2.2 » UNE 1999 7

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.4.10 Email Domain Queue Viewer

This application provides a combined view of the email stats database (see Table 5-7) and the
email domain channel queue. The viewer application uses a tree widget with branches
representing domains and |leaves representing the MSNs in the queue records.

| 5.4.11 Channel Queue Viewer

The Channel Queue Viewer application providesalisting of records queued to go out achannel
gueue. Thefields displayed in the Channel Queue Viewer are the M SN, the time of queuing,
and, for files destined for a UDF channel, the outgoing UDF file name. The raw message
viewer (described in Section 5.4.8) or the JDS Viewer (described in Section 5.4.7) may be
invoked from the Channel Queue Viewer. The user may delete a queue entry, with the option
of placing it into the error queue.

5.4.12 Rejected Email Box Viewer

The RejectedEmail application provides aview of the contents of the rejected email mailbox.
The rejected email is stored in the following file: /h/data/global/EC/M essages/rejected. For a
description of received email processing and rejection, see Section 5.2.6. The ECPN
administrator can select a message to view and can reinject a message after modifying the
channel configurations to attribute the message to a particular channel. The Rejected Email
Box Viewer displays the From address, the message id, and the reason for email rejection.

78 SDD FOR ECPN VERSION 2.2 « JUNE 1999

5.4.13 RDBMS Injector

SOFTWARE DESIGN DESCRIPTION FOR ECPN

The RDBMS injectors, Objlnject and Trnlnject, process data that is appended to the RDBM S
Queue (OUT_RDBMS REC) and the Transaction Queue (OUT_TRANS_REC) respectively.
These queues are populated by the X 12 Message Processing CSC (described in Section 5.3)
and the Communications CSC (described in Section 5.2). The Router popul ates the RDBM S
Queue with data associated with the message envel ope. The Router, Comms process (described
in Section 5.2.2), and Email Send process (described in Section 5.2.5) populate the Transaction

Queue with data associated with transactions performed by ECPN on a particular message

(e.g., received, transmitted).

The RDBMS injectors pull data (listed in Table 5-19 and Table 5-20) off their respective

gueues and inject it into the RDBM S message database (described in Section 5.4.15).

The RDBMS injectors are written in a combination of C and embedded Standard Query

Language (SQL).

Table 5-19 RDBMS Queue Table (OUT_RDBMS REC)

Field Name Type Description

msn_name MSN_NAME M essage Sequence Number (format:
SNNNNNNNN/YYYYMMDD)

ic_number int Interchange control humber

recv_id ID_NAME ISA Tofield

send id ID_NAME ISA From field

gs_ctrl_no int GS control number

gs to ID_NAME GSTofield

gs _from ID_NAME GS From field

st _ctrl_no ST_NUM ST control number

trans_type ST TYPE Transaction message type (e.g., 850, 843,
836)

po_number PO_NUM Purchase order number

solicitation SOL_NUM Solicitation number

SDD FOR ECPN VERSION 2.2 » UNE 1999

79

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Field Name Type Description
msn_name MSN_NAME Message Sequence Number (format:
SNNNNNNNN/YYYYMMDD)
trans_code int Type of action (e.g., RECV, XMIT)
trans_dtg long Time of action
channel_name CHAN_NAME Channel associated with action
byte count int Size of the message
file_name SHORT_FILE_NAME Remote side file name
5.4.14 RDBMS Retrieval

80

Table 5-20 Transaction Queue Table (OUT_TRANS REC)

The RDBMSretrieval application (ObjectMMI) providesaMotif GUI interfacefor directing a
retrospective search of the RDBM S message database (described in Section 5.4.15). This
application constructs adynamic SQL query (based on datainput from the ECPN
administrator), executes the query, and presents the retrieved data in a scrolling text window.
For any selected entry in the scrolling text window, the user can invoke the Journal Data
Summary Viewer (described in Section 5.4.7) or view alist of transactions that have occurred
on the message.

The ECPN administrator may enter data values in the following fields to direct the
retrospective search:

* MSN

e ISA Control Number
e |SA From

ISA To

GS Control Number

GS From

GS To

ST Control Number

ST Type

Channel

Purchase Order Number
Solicitation Control Number
Filename

Date Range

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.4.15 RDBM S Message Database

The RDBMS functions are implemented using an Oracle database. The RDBMS tracks
messages based upon message attributes. For example, it iscommon for site personnel to look
up messages based on the Purchase Order Number or Solicitation Number contained within a
transaction or by the filename under which the message was transmitted to ECPN. The
RDBM S message database contains derived message information on each message processed
by the ECPN. The datais stored in two tables: a message object table and a transaction table.
The message object table contains ISA, GS, and ST fields from the message object. The
transaction table stores information on transactions that occurred for a given message. This
database is queried viathe RDBMS retrieval application (described in Section 5.4.14). New
RDBM S message tables are created each day to hold information on all messages received on
that day. The RDBM S table database (see Section 5.4.16) contains information on which
RDBMS message tables are currently loaded on the system. The archived tables are stored

under Daily/<yyyymmdd>/ArchivesORACLE.

The fields maintained within the message database are listed in Table 5-21.

Table 5-21 RDBMS Message Database Fields

Field Name Type Description
msn_count int Sequence number portion of the MSN
msn_date date Date portion of the MSN
ec_schema ver |int Schema version number
isa_cntl_num int Interchange Control Number (ISA13)
isa_from char [ISA_MAX] ISA Sender ID (ISA06)
isa_to char [ISA_MAX] ISA Receiver ID (1SA08)
gs_cntl_num int Group Control Number (GS06)
gs_from char [GS_MAX] GS Sender ID (GS02)
gs_to char [GS_MAX] GS Receiver ID (GS03)
st_cntl_num char Transaction Set Control Number (ST02)

[ST_CNTL_NUM_MAX]
st type char [ST_TYPE_MAX] Transaction Set ID Code (ST01)
po_number char [PO_NUM_MAX] Purchase Order Number (BEGO03)

solicit_number

char [SOLIT_NUM_MAX]

Salicitation Control Number (BQT02)

trans id int Unique daily transaction identification
trans_code int Indicates receipt, transmission, etc.
msn_count int Number of MSNs in the message
msn_date int Date of the MSN

SDD FOR ECPN VERSION 2.2 » UNE 1999

81

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-21 RDBMS Message Database Fields (Continued)

Field Name Type Description
trans dtg date Transaction date-time stamp
channel char [CHANNEL_ MAX] Incoming or outgoing channel
byte count int Number of bytesin message
file_name char Filename in remote system

[SHORT_FILENAME_MAX]
site id char Site identification character
5.4.16 RDBMS Table Database

The RDBM Stable database maintainsalist of which RDBM S message databases are currently
loaded within ECPN. Thisinformation is accessed viathe RDBM Srretrieval application
(described in Section 5.4.14).

The fields maintained within the table database are listed in Table 5-22.
Table 5-22 RDBMS Table Database Fields

Field Name Type Description
table name char [25] Name of daily table
activity char [3] Action (e.g., created, archived, restored,
merged)
act_date date Activity date-time stamp
row_count int Number of rowsin table
file_location char [1024] | Location of backup file

82 SDD FOR ECPN VERSION 2.2 « JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.5 Translation

The Translation CSC is responsible for converting incoming (to ECPN) User Defined File
(UDF) messages to ANSI X12 messages, as well as converting outgoing (from ECPN) ANS]
X12 messages to UDFs. The UDF format represents any format used by a remote system to
which ECPN is connecting. The Translation CSC consists of the following SCSCs:

e UDF to X12 Translator (InXlator)

e X12 to UDF Translator (OutXlator)
e Trading Partner Database

e System Setup Database

There are two variations of the translator program running on the ECPN. One variation
provides translation from UDFs to X12s for all UDFs sent to ECPN from Government
agencies. The other variation provides X12 to UDF translation for X12s to be sent to
Government UDFsites from ECPN. For each translation that occurs, ECPN sends positive or
negative acknowledgments to one or more email addresses as configured in the edit channel
window’s ADMIN tab. The trading partner database contains trading partner information
necessary for converting UDF addressing schemes to a standard Data Universal Numbering
System (DUNS) addressing scheme for X12 messages.

The system setup database holds start and end boundaries for Interchange Control Numbers
(ICNs) and Group Control Numbers (GCNs), as well as the ECPN site’s Interchange addresses.
These items are necessary for generating the X12 envelope during a UDF to X12 translation.

5.5.1 UDF to X12 Translator

This section describes how a UDF sent to ECPN is translated to an X12 and routed to its
destination. The following items are discussed:

* Processing Flow

* Channel Configuration

e Maps and TSlI/Mercator

e UDF to X12 Processing Details

SDD FOR ECPN VERSION 2.2 » UNE 1999 83

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.5.1.1 Processing Flow

Figure 5-2 depicts a UDF being received by ECPN.

Figure 5-2 UDF to X12 Processing Flow: Translation

SENDER

Incoming
Communications

UDF to X12
Trandlator

X12, Status, 824 X12, UDF

Mercator API
Library

Maps System Setup

Database

Original Message Trading Partner
? Database

Communication flow

The incoming communications processes queue the UDF to theincoming transl ator for further
processing. The trandlator uses the Mercator API to run the appropriate maps, resulting in the
tranglation of the UDF to an X12. The X12 is passed to the router for processing. See

Table 5-24 for the list of items (e.g., 824) placed on the Incoming X 12 Queue.

84 SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Figure 5-3 depictsthe processing done by the router after it receivesinformation from the UDF

to X12 trandlator.
Figure 5-3 UDF to X12 Processing Flow: Decoding/Routing
RECEIVER
From UDF to X12 Trangdlator
X12, Status, 824 X12, UDF X12
X12 Outgoing
Communications
v <
N e
N - \ 824 UDF
X12 to UDF 824 UDF K
824 X12 Translator
SENDER
Mercator API
Library
Origina Message

Communication flow

___ Acknowledgment Maps

Therouter links this information together so that an ECPN administrator can track which X12
was produced from which UDF and what type of acknowledgment was sent to the message
originator.

If the translation was successful, the router sends the X12 to the appropriate outgoing
communications process to be delivered to the receiver.

If the sender was configured to receive acknowledgments (824 UDF), the router also queues
the 824 X 12 tothe X12 to UDF tranglator. The translator |oads the appropriate maps, translates
this 824 X 12 ack to a 824 UDF and queues it to the outgoing communications process
associated with the sender of the original UDF.

5.5.1.2 Channel Configuration

A communications channel can be configured for receiving/sending only one family of
messages (e.g., X12, SPS, SAACONS, APADE). In other words, a channel cannot receive/
send a mixture of messages from different families.

SDD FOR ECPN VERSION 2.2 » UNE 1999 85

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.5.1.3 Maps and TSI/Mercator

The UDF to X12 trandator uses TSI's Mercator API library to:

« bind individual UDFs within a multiple UDF file.

» parse the individual UDFs.

» load the appropriate map, based on the map family configured in the channels database.

» execute the map, resulting in parsing of the UDF and generation of an X12 that conveys
the same information as the UDF.

Most of the UDF families have two maps, one for translating UDFs to X12s and another for
translating X12s to UDFs. A few families (e.g., those associated with DTS) may have only the
X12 to UDF map. Refer to thdapper’s Guide for Electronic Commerce Processing Nfmie
details about the mapping process.

5.5.1.4 UDF to X12 Processing Details

86

1. Thecommunications channel for receiving UDFsfrom the sender is set to the UDF family
that the sender transmits.

2. The associated comms process opens the UDF to X 12 translation queue.

3. For eachfilethat is successfully received, during the conversion, the communication
process:

a. createsaqueue entry structure of type UDF2X12 QREC, with members as noted in
Table 5-23.

b. appends that queue entry to the UDF to X 12 translation queue.

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-23 Commsto Translation Queue Fields for UDF to X12 Translation (UDF2X12_QREC)

Field Name Type Description

orig_filename | SHORT_FILE_NAME Name of the file as it was named on the remote
system

udf_filename SHORT_FILE_NAME Name of the UDF file on ECPN
(a temporary name)

udf_chan_nam¢ CHAN_NAME Name of the channel on which the UDF file|has
been received

udf_msg_type | CHAN_MSG_TYPE| UDF family to which the UDF belongs (e.g.

SPS)

TOR long Time of receipt. ECPN system time when thg
UDF file was received.

reproc_ MSN MSN_NAME Message Sequence Number

(format: SNNNNNNN/YYYYMDD) |
used only when this message is being
retranslated

Once the session is done, the communication process closes the queue.

4. The UDF to X12 translator process opens two queues: the UDF to X 12 translation queue
to get entries made by the communication processes and the incoming X12 queue for
giving the results to the router.

5. For each entry retrieved from the UDF to X 12 queue, the tranglator:

a. runsthe premap which binds individua UDFs within amultiple UDF file. This step
prepares the intermediate UDF files that will be passed through the UDF to X12 map.

b. formsthe X12 file name to which the translated output will be written.
c. cdlsthetranslator support function, “UDF2X12", to translate the UDF. This function:

» loads the appropriate map(s) for Mercator, based on the map family configured for
the channel.

« calls functions from the Mercator API library to perform the translation from UDF
to X12. During this operation, lookups are performed on the trading partner
database and the system setup database in order to generate the X12 envelope.

SDD FOR ECPN VERSION 2.2 » UNE 1999 87

SOFTWARE DESIGN DESCRIPTION FOR ECPN

* generates an 824 “acknowledgment” message, concerning the success or failure of
the translation, which is sent back to where the UDF originated.

 interacts with the trading partner database and the system setup database for
generating envelope information for the resulting X12.

d.

constructs an IN_X12 FILE REC.IN_UDF2X12 REC entry (Balele 5-24, and

places it in the Incoming X12 queue.

6. After all of the individual transactions that comprise the original UDF file have been
processed, ECPN deletes the local copy of the original UDF file and removes the processed
entry from the UDF to X12 translation queue.

Table 5-24 Translator to Router Queue Fields for UDF to X12 Trandation (IN_UDF2X12_REC)

Field Name Type Description
genx12_and_824 struct UDF2X12 RHEC
x12_filename SHORT_FILE_NAME| Name of the translated X12 file
udf_filename SHORT_FILE_NAME| Name of the UDF file on ECPN that resulte

the X12 (individual transaction file)

i in

xltr_error_type

short

Value from the enum XLTR_ERROR_TYP
that indicates the status of running a map

the

the UDF file was translated

errfile SHORT_FILE_NAME| Name of the error file that was produced byj
translator with detailed errors found while
translating the UDF

TOX unsigned long Time of translation. ECPN system time when

gen824_filename

SHORT_FILE_NAME

Name of the 824 translation status file that
is sent back to the sender if so chosen

sectinfo_filename

SHORT_FILE_NAME

Name of a file that has info on “groups” of
messages (e.g., for IPC)

pull_filename

SHORT_FILE_NAME

Name of the UDF file on the remote syste

Im

in_chan_name

CHAN_NAME

Name of the channel on which this UDF ¢
into ECPN

pme

udf_msg_type

CHAN_MSG_TYPE

UDF family to which this UDF belongs

TOR

unsigned long

Time of receipt. ECPN system time when
the UDF file was received.

Translation success, TPDB lookup failure, and UDF errors are appropriately noted in the queue

record.

88

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Retransating a UDF after TPDB errorsare corrected:

When TPDB lookup errors occur, 824s are not sent back to the sender. It is the responsibility
of the ECPN administrator to correct the trading partner database and retranslate the UDF.
Upon retranslation, the router formsa UDF2X12 REXLATE_REC structure, filling in the
reproc_ MSN field, udf_filename field, and others, and placesit in the UDF to X12 translation
gueue. Because the original UDF fileis not kept, the translator pulls the UDF message text
from the message object and creates a file for the maps.

The tranglator then processes this entry just as it would process an entry made by a
communication process. The results are sent to the router in the union variant
IN_X12 FILE_REC.UDF2X12_REXLATE_REC (see Table 5-10).

5.5.2 Trading Partner Database (TPDB)

ECPN sends and receives messages to and from many different applications. Each application
implements a unique UDF. These UDFs may contain unique addressing information that must
be converted to standard X 12 addressing during translation. Using the UDF address
information, the translator performs alookup on the trading partner database to get the
corresponding X 12 address. The trading partner database contains a list of addresses for each
trading partner that was either parsed from an 838 message or manually entered.

Table 5-25 Trading Partner Profile Database Fields for Translation

Field Name Type Description
isa_addr char [ISA_ADDR_LEN +1] ISA Address
isa_qua char [ISA_QUAL_LEN +1] ISA Address Qualifier
gs_addr char [GS ADDR_LEN +1] GS Address
duns char [DUNS LEN +1] Dun and Bradstreet Numbering System code
provider char [PROVIDER_LEN +1] Three-letter VAN Identification
cage char [CAGE_LEN +1] Commercia and Government Entity Code
dodaac char [DODAAC_LEN +1] DoD Activity Address Code

SDD FOR ECPN VERSION 2.2 » UNE 1999 89

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Sites register with the Central Contractor Registry (CCR) with an X12 838 (Trading Partner
Profile). The 838 is forwarded to ECPN whereit is parsed to create or update trading partner
database entries. Table 5-26 lists the fields that are parsed from the 838 for inclusion in the
trading partner database.

Table 5-26 CCR 838 Parsed Fields

Segment Element Notes
020 BTP 01 -Transaction Set Purpose 00 Original
01 Cancellation
07 Duplicate - Handled as an origind
02 - Reference ID
03 - Date
04 - Time
06 - Transaction Set Purpose 04 - Change
(For BTPOL = 00 or 07 only) 30 - Renewal
35 - Request Authority
07 - Reference ID
08 - Date
09 - Time
030 PLA 01 - Action Code WQ - Accept
060 N1 01 - Name Must provide one loop with N101 = KK for
registrant and N101 = WQ for activity or
agency of registrant
03 - Identification Qualifier 1- DUNS Number
9 - DUNS+4 Number
390 ENE 01 - Communication PP - Point-to-Point
Environment Code SC - Service Provider (indicates ENEO3
identifiesa VAN)
03 - Communication Number Three-Letter VAN ID
400 N1 01 - Entity Identifier Code GP - Gateway Provider

02 - Name

03 - Identification Code
Qualifier

04 - Identification Code

NN - Network Name
If N1 = NN, usetoindicate full name of VAN
ISA Address Qualifier

ISA Address

90

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.5.3 System Setup Database

The system setup database holds the following information that is used by the trandator to fill
in the ISA05, ISA06, ICN and GCN fields when translating a UDF to an X12:

« Site ID Qualifier (ISA05)

» Site ID (ISA06)

« Starting and Ending Interchange Control Numbers (ICN) (ISA13)
e Starting and Ending Group Control Number (GCN) (GS06)

The ISA05 and ISA06 specified in this database is put into every X12 generated by the
translator. For every X12 produced, the translator increments the current ICN and GCN, using
the start ICN and start GCN initially and wrapping once the ending ICN or GCN is reached.

5.5.4 X12 to UDF Trandlator

This section describes how an X12 message that is sent to ECPN is translated to a UDF for
routing/transmission to a UDF destination. The following items are discussed:

» Processing Flow

e Channel Configuration

e Maps and TSI/Mercator

e X12 to UDF Processing Details

5.5.4.1 Processing Flow

Figure 5-4depicts an X12 being received by ECPN from a sender. The incoming
communication processes queue the X12 file to the router for further processing. After
completion of bounding and parsing, the router determines the destinations for the message.
For each destination that is configured as UDF, the router queues the X12 to the X12 to UDF
translator for further processing. The X12 to UDF translator uses the Mercator API to run the
appropriate maps to perform the translation.

SDD FOR ECPN VERSION 2.2 » UNE 1999 91

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Figure 5-4 X12 to UDF Processing Flow: Translation

SENDER RECEIVER

UDF
997 X12

Incoming
Communications

Outgoing Comms

997 X12

A

SENDER

<
\

X12 997 X12

X12 to UDF
Trandlator

Mercator API
Library

Trading Partner
Database

Maps

Upon successful translation, the UDF is sent to the appropriate outgoing communications
process for delivery to the receiver. The 997 X 12 is sent to the router with its destination being

the sender of the translated X 12.

If the sender was configured to receive acknowledgments (997 X 12s), therouter queuesthe 997
X12 to the appropriate outgoing communications process.

If tranglation failed, the X 12 isplacein the error queue for handling by the ECPN administrator.

5.5.4.2 X12 to UDF Processing Details

1. The communications channel for sending the UDFs to the receiver is designated as the
UDF family that the receiver can process.

2. Therouter readsan IN_X12 FILE REC record from the incoming X12 queue.

3. Therouter determines the final destination of the message. If the destination channel, as
configured in the channel database, is a UDF channel, the router forms an entry of type
X122UDF_QREC and appendsiit to the X12 to UDF translation queue.

92 SDD FOR ECPN VERSION 2.2 « JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECP

N

Table 5-27 Router to Trandator Queue Fields for X12 to UDF Trandlation (X122UDF_QREC)

Field Name Type Description
msn MSN_NAME Message Sequence Number that uniquely identifieg the
X12 message on the ECPN
out_chan_name CHAN_NAME Name of the channel on which the UDF file is

to be sent

udf_msg_type

CHAN_MSG_TYPE

UDF family to which the X12 should be translated

identifier

int

Use

d internally to maintain queues

4. The X12to UDF translator process begins processing the queue entry by using the MSN
info in the entry to form atemporary X 12 file. The translator support function, “x122udf”,
is then called to translate the X12 to a UDF.

Once the translator successfully completes processing the entry, it removes the temporary X12
file it generated and deletes the entry from the X12 to UDF translation queue. The translator
constructs an IN_X12_FILE_REC.X122UDF_REC entry for the generated 997 and appends
the entry to the incoming X12 queue for the router to process further. The translator also creates
and appends an OUT_CHAN_REC entry to the appropriate outgoing channel queues, telling
the outgoing communications process to transmit the generated UDF.

On translation failure, the X12 is placed in the error queue, and the entry is removed from the
X12 to UDF queue.

Table 5-28 Translator to Router Queue Fields for X12 to UDF Trandation (X122UDF_REC)

Field Name Type Description
msn MSN_NAME Message Sequence Number for the X12 that
was just translated
identifier int Used internally to maintain queues

gen997_filename

SHORT_FILE_NAMEH

t] Name of the 997 X12 file

xltr_error_type short Value from the enum XLTR_ERROR_TYPE
that indicates the status of running a map
out_chan_name CHAN_NAME Name of the channel on which the UDF

was sent

Success or failure is appropriately indicated in the X122UDF_REC.

SDD FOR ECPN VERSION 2.2 » UNE 1999

93

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-29 Translator to Comms Queue Fields for X12 to UDF Trandlation (OUT_CHAN_REC)

Field Name

Type

Description

msn_name

MSN_NAME

M essage Sequence Number for the X12 that
was just translated

out_udf filename

SHORT_FILE_NAME

Name of the UDF file that was generated
from trandating the X12

site id

char [SITE_ID_LEN]

Three-character file extension denoting the
siteid on the remote and used in naming the
UDF file that's pushed to the remote site
(Used for SAACONS only)

Xvar

char [XVAR_LEN]

Value passed from the X12 that was
translated and used in naming the UDF f
that's pushed to the remote site

e

identifier

int

Used internally to maintain queues

ttype

char [TTYPE_LEN]

(Used by SAACONS only) One-charact

file prefix that identifies the transaction type

and used in naming the UDF file that’s
pushed to the remote site

=8

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

5.6 Alert Management

The Alert Management CSC isresponsible for providing a single mechanism for generating
and managing alerts across the ECPN CSCI. The Alert Management CSC consists of the
following SCSCs:

* Alert Daemon
« Alert Notifier (NEPAlertNotify)
« Alert Notifier Database

5.6.1 Alert Daemon

The alert daemon manages a erts generated by the ECPN CSCI. Generated alerts are stored on

disk and delivered to clients upon request. Applications request alerts from the alert daemon
based on the alert type. The alert daemon is also responsible for marking each alert as having
been dismissed or not.

The circular queue used by the alert daemon to manage alerts contains a maximum of 2,500
ALERT_QUEUE_SIZE entries.

Implementation - Implemented in the libAlerts library archive and the AlertDaemon server.

5.6.2 Alert Notifier

The dert notifier (NEPAlertNtfy) isaclient of the alert daemon (described in Section 5.6.1)
that receives aertsand performsthe notification actions defined for thea ert inthe alert notifier
database. An NEPAIlertNtfy processis started for each user session. The alert notifier performs
two notification actions:

* Electronic mail (which optionally includes the data file causing the alert)
» Personal beeper or phone dialing

5.6.3 Alert Notifier Database

The dert notifier database is a data element that defines the notification action(s) to be
performed when an aert is generated. An entry in the database consists of the alert criteriaand
one or more notification actions. The notification methods are via email or dialing a phone
number (i.e., notification via beeper or cellular phone).

The alert notifier database is populated through the AlertNtfyDB user inteflaealert
notifier database is limited to 200 entries, and each entry can contain up to 10 notification
actions.

Implementation - Implemented in the AlertNtfyDB application.

SDD FOR ECPN VERSION 2.2 » UNE 1999 95

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Table 5-30 Alert Notifier Fields

O

Field Name Type Description

type int Type of aert to notify on (correspondsto alert typesin
NEPAlertList datafile - e.g., “FILE ACCESS
ERROR")

key char[] Channel to match against before notifying. If set t
“ALL", all alerts of the above type are notified,
regardless of which channel (if any) they were
associated with.

num int Number of notification actions set for an alert

method int Notification method - EMAIL or BEEPER

active int Alert notification activated

address charf] Address to email notifications should be sent

phone charf] Number to dial for beeper notifications

confirm int Flag for whether or not to include file (if present) in
email notifications

5.7 Executive

96

The executive manages all ECPN processes. It launches processes when it receives a request
and managesthe shutdown of processeswhen they exit. Requestsfor processlaunch comefrom
either a GUI event or ecedi_srv, which is a script that launches the EC_COE services at init

level 4.

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

6.0 Requirements Traceability

The traceability between the ECPN reguirements and the version of ECPN in which the
reguirements were met is addressed in the Software Requirements Specification (SRS) for
Electronic Commerce Processing Node.

SDD FOR ECPN VERSION 2.2 » UNE 1999 97

SOFTWARE DESIGN DESCRIPTION FOR ECPN

7.0 Acronyms

The following acronyms and abbreviations appear in this document:
AlS: Automated Information System

ANSI: American National Standards Institute

API: Application Programming Interface

ASCII: American Standard Code of Information Interchange
COTS: Commercia Off-the-Shelf

CSC: Computer Software Component

CSCI: Computer Software Configuration Item

CSU: Computer Software Unit

DID: Dataltem Description

DI SA: Defense Information Systems Agency

DoD: Department of Defense

EBCDIC: Extended Binary Coded Decimal Interchange Code
EC/EDI: Electronic Commerce/Electronic Data Interchange
ECPN: Electronic Commerce Processing Node

Email: Electronic Mail

FIFO: First-In, First-Out

FTP: File Transfer Protocol

GUI: Graphical User Interface

ID: Identification

IDD: Interface Design Description

INRI: Inter-National Research I nstitute

98 SDD FOR ECPN VERSION 2.2 « JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

| / O: Input / Output

JDS: Journal Data Summary

MIME: Multi-purpose Internet Mail Extension

M SN: Message Sequence Number

PCM: Process Control Module

RDBM S: Relational Database Management System
RPC: Remote Procedure Call

SCSC: Sub-Computer Software Component

SDD: Software Design Description

SMTP: Simple Mail Transport Protocol

SQL : Standard Query Language

SRS: Software Requirements Specification
TCP/IP: Transmission Control Protocol/Internet Protocol
UDF: User-Defined File

UTC: Universal Time Coordinate

SDD FOR ECPN VERSION 2.2 » UNE 1999

99

SOFTWARE DESIGN DESCRIPTION FOR ECPN

This page has been intentionally Ieft blank.

100 SDD FOR ECPN VERSION 2.2 « JUNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Appendix A Alerts

Alerts are generated by ECPN to notify users of specific conditions or problems. A description
of each alertisprovided in Appendix B of the Software User’s Guide for Electronic Commerce
Processing Node.

SDD FOR ECPN VERSION 2.2 » UNE 1999 101

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Appendix B System Capacities

Thefollowing list of system data repositories have unlimited capacities. They arelimited only
by the amount of disk space available.

* Routing Database

e Channel Database

« Trading Partner Database

* Message Log

e Error Queue

* System Log

» Outgoing Email Queue

* Incoming X12 Queue

* Incoming Translation Queue
« Outgoing Translation Queue
* Interface Status Database

* Message Database

The capacities of other data repositories are as listed in Table B-1.

Table B-1 Capacities

Data Repository Capacity Description
Alert Database 2500 Circular queue which wraps at 2500
Alert Notify Database 200 entries with| Maximum number of entries is 200. Each engtry
10 notifications | can have 10 notification actions.
per entry

102

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Appendix C Glossary

Computer Software Configuration Item (CSCI) - A CSCl is a sub-component of a CSC.
Computer Software Configuration (CSC) - A CSC is a sub-component of a System.
Computer Software Unit (CSU) - A CSU is a sub-component of an SCSC

Inbound - Describes messages being received by the government. ECPN is considered part of
the government; thus, messages received by ECPN are considered inbound messages.

Multi-purposelnternet Mail Extension (MIME) - MIME extendstheformat of Internet mail
to allow non-US-ASCI| textual messages, non-textual messages, multipart message bodies,
and non-US-ASCII information in message headers.

Outbound - Describes messages being sent out by the government. ECPN is considered part
of the government; thus, message sent out by ECPN are considered outbound messages.

Remote Procedure Calls (RPC) - RPCs provide away to distribute program segments across
computersin anetwork. This allows communication with more than one machine on agiven
network while executing a program and communicating with other programs that run on the
same machine.

Simple Mail Transport Protocol (SMTP) - SMTP is Internet’s standard host-to-host mail
transport protocol.

Sub-Computer Software Component (SCSC) - A SCSC is a sub-component of a CSCI
User Defined File (UDF) - User defined file is a generic term that applies to any Electronic]

Commerce system that does not output data according to a defined EDI format (e.g. X12 or
EDIFACT). By definition, UDFs are different for different systems.

SDD FOR ECPN VERSION 2.2 » UNE 1999 103

SOFTWARE DESIGN DESCRIPTION FOR ECPN

Appendix D Message Object Parse API

104

The following API(s) are provided to simplify parsing of the message object segments:
int AddK ey(char *seqg, ...)

“seg” represents the segment type of interest to the caller. “...” is a variable length list of the
field numbers in that segment that the caller wants returned. The last item in this list must be a
-1 as a sentinel value for the list. A field number of 1 identifies the field after seg. AddKey()
returns 1 if successful in adding the key, 0 otherwise. Possible causes of failure:

The key list is full. Currently, the caller can specify a maximum
of 10 keys.

seg has a string length greater that 4, the number of bytes in an
integer.

Example: AddKey(“GS", 5, 8, -1);

This example instructs that, for every GS in the message object, return fields 5 and 8 to the
caller.

void ClearK eys()
Used to clear all the current keys added by the caller.

int SetM SN(char *msn_name)
Used to set the message object, specified by “msn_name”, on which to perform the key search.
Returns 1 if successful, 0 otherwise. Possible causes of failure:

Could not open the message object specified.

unsigned int FindSeg()

Used to find the next segment which matches any of the keys added by the caller. Returns the
SegVal of the segment matched, which is equivalent to HASH(“<seg str>"). Returns 0 if
unsuccessful. Possible causes of failure:

Reached the end of the message object.

void SetM sgObj (EC_M SG_OBJ *m)

Identifies a new message object to parse. Resets all current state information, except the keys.
Parse routines will now start at the beginning of the message object, looking for previously set
keys.

void FreeFields (char **ptrs, int num)
Frees the list of fields which were allocated by a call to FetchFields(). “ptrs” is the list of fields
and “num” represents the number of fields in the list.

SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

int FetchFields(char **fields)

Used to return the fields requested by the caller for the currently matched segment. The number
of char *field pointers should equal the number of fields requested by the user in the AddK ey()
cdl, and the return order of the fields is the order in which the fields were listed

inthe AddKey() call. Any field that was unable to be retrieved will be returned as NULL.
Returns the number of fields successfully retrieved for the segment.

NOTE: HASH exists both as a macro (typical usage) and as a C function (for use
in debuggers). UNHASH only exists as a C function.

unsigned int HASH(char *str)
HASH is a macro function which will return an unsigned integer representing the content of
“str”.

char *UNHASH (unsigned int IdVal)
Returns the string value for “IdVal”.

The following is a sample code segment representing the usage of these functions in a context:

#include <string.h>
#include <strings.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <varargs.h>
#include <EC/X12Msg.h>
#include <EC/msg_obj.h>
#include <EC/Vids.h>
#include <assert.h>
#include "parse.h"
#include <EC/common.h>

void main(int argc, char**argv) {

char msn[18];
char *isa_fields[3], *iea_fields[2], *ref_fields[2];

int i, no_isa = 3, no_iea = 2, no_ref = 2, no_fetched = 0;
unsigned int seg_type;

if (argc < 2) {
printf("Usage: parse <full msn path/filename>\n");

}

ncpy (msn, argv[1], 17);

SDD FOR ECPN VERSION 2.2 » UNE 1999 105

SOFTWARE DESIGN DESCRIPTION FOR ECPN

AddKey("ISA", 1, 5, 15, -1);
AddKey("REF", 1, 2, -1);
AddKey("IEA", 1, 2, -1);

if (1SetMSN(msn)) {
printf("Couldn’'t open msn %s.\n", msn);
exit(0);

}

while ((seg_type = FindSeg()) '=0) {
if (seg_type==HASH("ISA")) {
no_fetched = FetchFields(isa fields);
if (no_fetched !'=no_isa) {
printf("Only fetched %d of %d fields requested.\n",
no_fetched, no_isa);
}
for (i=0;i<no_isa i++) {
if (isa_fieldg[i] '=NULL) {
printf ("ISA - %s\n",isa fieldgi]);
}
}
/*
** Because FetchField() strdups fields found, they must be
** freed.
*/
FreeFields(isa fields, no_isa);
} eseif (seg_type ==HASH("IEA")) {
no_fetched = FetchFields(iea_fields);
if (no_fetched !=no_ieq) {
printf("Only fetched %d of %d fields requested.\n",
no_fetched, no_iea);
}
for (i =0; i <no_iea; i++) {
if (ilea_fieldd[i] '= NULL) {
printf ("IEA - %s\n"iea_fieldd[i]);
}

}
/*
** Because FetchField() strdups fields found, they must be
** freed.
*/
FreeFields(iea fields, no_ied);
} dseif (seg_type == HASH("REF")) {
no_fetched = FetchFields(ref_fields);
if (no_fetched !'=no_ref) {
printf("Only fetched %d of %d fields requested.\n",
no_fetched, no_ref);

106 SDD FOR ECPN VERSION 2.2 « UNE 1999

SOFTWARE DESIGN DESCRIPTION FOR ECPN

}
for (i = 0; i <no_ref; i++) {
if (ref_fieldg[i] '= NULL) {
printf ("REF - %s\n",ref _fieldgi]);
}
}
/*
** Because FetchField() strdups fields found, they must be
** freed.
*/
FreeFields(ref_fields, no_ref);
} else{
printf(*Unrecognized segtype\n™);
break;

SDD FOR ECPN VERSION 2.2 » UNE 1999 107

SOFTWARE DESIGN DESCRIPTION FOR ECPN

This page has been intentionally Ieft blank.

108 SDD FOR ECPN VERSION 2.2 « UNE 1999

	1.0 Scope
	1.1 Identification
	1.2 System Overview
	1.3 Document Overview

	2.0 Referenced Documents
	3.0 CSCI-Wide Design Decisions
	4.0 Architectural Design
	4.1 Architectural Overview
	Figure�4�1 ECPN Component Decomposition

	4.2 Computer Software Components
	4.2.1 Data Management
	4.2.2 Communications
	4.2.3 X12 Message Processing
	4.2.4 Translation
	4.2.5 Audit
	4.2.6 Alert Management
	4.2.7 Executive

	4.3 Message Processing Flow
	4.3.1 X12 Message Processing
	Figure�4�2 X12 Message Processing

	4.3.2 UDF Message Processing
	4.3.2.1 Incoming UDF
	Figure�4�3 UDF Incoming Message Processing

	4.3.2.2 Outgoing UDF
	Figure�4�4 UDF Outgoing Message Processing

	4.3.3 X12 and UDF Message Processing
	Figure�4�5 X12 and UDF Message Processing

	4.4 Interface Design
	Table�4�1 Communication Interface COTS Products and Standards

	5.0 ECPN CSCI Detailed Design
	5.1 Data Management
	5.1.1 RPCServer
	5.1.1.1 Database, Log, and Queue Rectifications
	5.1.1.2 Database, Log, and Queue Creation

	5.1.2 Databases
	5.1.2.1 Database API

	5.1.3 Logs
	5.1.3.1 Log API

	5.1.4 Queues
	5.1.4.1 Queue API

	5.1.5 Hash Tables
	5.1.5.1 Hash Table Creation
	5.1.5.2 Hash Table Implementation
	Figure�5�1 Hash Table Data Structure

	5.1.5.3 Hash Table API
	5.1.5.4 Miscellaneous RPCServer Remote Procedure Calls

	5.1.6 Message Object
	5.1.6.1 Message Object API
	5.1.6.2 Message Object Field Descriptions
	Table�5�1 Message Object Fields (Continued)
	Table�5�2 Message Object err_type/error_expansion Values (Continued)

	5.2 Communications
	5.2.1 EditChannels
	5.2.2 Comms
	5.2.2.1 Scheduling Sessions
	5.2.2.2 Communications Sessions
	5.2.2.3 Comms Children Database
	5.2.2.4 Serial Sessions
	5.2.2.5 Kermit
	Table�5�3 Kermit Operation String/Action Relationship�
	Table�5�4 Kermit Channel Fields (AsyncStruct) (Continued)

	5.2.2.6 ZMODEM
	5.2.2.7 CLEO
	Table�5�5 CLEO Channel Fields (CleoStruct)�

	5.2.3 FTP Sessions
	Table�5�6 FTP Channel Fields (FTPStruct) (Continued)

	5.2.4 File Transfer Protocol Daemon (ftpd)
	5.2.5 Email Send Electronic Mail (email_meta/email_send)
	Table�5�7 Email Stats DB Fields (EMAIL_STATS)
	Table�5�8 Email Channel Fields (EmailStruct)�

	5.2.6 Electronic Mail Daemon (emaild)
	5.2.7 Channel Status
	Table�5�9 Channel Status Database (CHAN_STAT_REC)��

	5.2.8 Incoming X12 Queue
	Table�5�10 Incoming X12 Queue Fields (IN_X12_FILE_REC) (Continued)
	Table�5�11 UDF to X12 Translator Structure (UDF2X12_REC)

	5.2.9 Outgoing Communication Queues
	Table�5�12 Outgoing Communication Queue Fields (OUT_CHAN_REC)�

	5.2.10 Channel Database
	Table�5�13 Channel Database Fields (Continued)

	5.3 X12 Message Processing
	5.3.1 Regular Received X12 Handling
	5.3.2 Translated UDF to X12 Handling
	5.3.3 UDF to X12 Retranslate
	5.3.4 System Generated File Handling
	5.3.5 Reroute Handling
	5.3.6 Retransmit Handling
	5.3.7 Message Report Handling
	5.3.8 SPS-EDA Handling
	5.3.9 Parsing
	5.3.9.1 Element Validation
	5.3.9.2 Element Storage
	5.3.9.3 Logging and Message Object Storage

	5.3.10 Route Lookup
	5.3.10.1 824 Routing
	5.3.10.2 997 Routing
	5.3.10.3 Message Route Database
	Table�5�14 Message Route Database Fields (ROUTE_REC)�

	5.3.11 Queueing

	5.4 Audit
	5.4.1 Message Log Database
	Table�5�15 Daily Message Log Database Fields (MSG_LOG_REC) (Continued)

	5.4.2 Error Queue
	Table�5�16 Error Queue Fields (MSG_LOG_REC)�

	5.4.3 Channel Log
	5.4.4 Incoming X12 Queue Viewer
	5.4.5 Message Log Viewer
	5.4.6 Error Queue Viewer
	5.4.7 Journal Data Summary (JDS) Viewer
	Table�5�17 JDS Viewer Message Journal Pane (Continued)

	5.4.8 Raw Message Viewer
	5.4.9 Channel Log Viewer
	Table�5�18 Channel Log Fields (CHNL_LOG_REC)

	5.4.10 Email Domain Queue Viewer
	5.4.11 Channel Queue Viewer
	5.4.12 Rejected Email Box Viewer
	5.4.13 RDBMS Injector
	Table�5�19 RDBMS Queue Table (OUT_RDBMS_REC)��
	Table�5�20 Transaction Queue Table (OUT_TRANS_REC)��

	5.4.14 RDBMS Retrieval
	5.4.15 RDBMS Message Database
	Table�5�21 RDBMS Message Database Fields (Continued)

	5.4.16 RDBMS Table Database
	Table�5�22 RDBMS Table Database Fields �

	5.5 Translation
	5.5.1 UDF to X12 Translator
	5.5.1.1 Processing Flow
	Figure�5�2 UDF to X12 Processing Flow: Translation
	Figure�5�3 UDF to X12 Processing Flow: Decoding/Routing

	5.5.1.2 Channel Configuration
	5.5.1.3 Maps and TSI/Mercator
	5.5.1.4 UDF to X12 Processing Details
	Table�5�23 Comms to Translation Queue Fields for UDF to X12 Translation (UDF2X12_QREC)�
	Table�5�24 Translator to Router Queue Fields for UDF to X12 Translation (IN_UDF2X12_REC)�

	5.5.2 Trading Partner Database (TPDB)
	Table�5�25 Trading Partner Profile Database Fields for Translation�
	Table�5�26 CCR 838 Parsed Fields�

	5.5.3 System Setup Database
	5.5.4 X12 to UDF Translator
	5.5.4.1 Processing Flow
	Figure�5�4 X12 to UDF Processing Flow: Translation

	5.5.4.2 X12 to UDF Processing Details
	Table�5�27 Router to Translator Queue Fields for X12 to UDF Translation (X122UDF_QREC)�
	Table�5�28 Translator to Router Queue Fields for X12 to UDF Translation (X122UDF_REC)�
	Table�5�29 Translator to Comms Queue Fields for X12 to UDF Translation (OUT_CHAN_REC)�

	5.6 Alert Management
	5.6.1 Alert Daemon
	5.6.2 Alert Notifier
	5.6.3 Alert Notifier Database
	Table�5�30 Alert Notifier Fields �

	5.7 Executive

	6.0 Requirements Traceability
	7.0 Acronyms
	Appendix A Alerts
	Appendix B System Capacities
	Table�B�1 Capacities�

	Appendix C Glossary
	Appendix D Message Object Parse API

